Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Kelderman
1
65 kgCort
2
68 kgVan Hoecke
3
78 kgVinjebo
4
67 kgGarby
5
63 kgKragh Andersen
6
72 kgCoquard
7
59 kgHofland
8
71 kgLampaert
9
75 kgValgren
10
71 kgMarkus
11
75 kgHaller
13
72 kgMcCarthy
15
63 kgDe Mesmaeker
16
68 kgKragh Andersen
20
73 kgClancy
21
63 kgFolsach
26
81 kg
1
65 kgCort
2
68 kgVan Hoecke
3
78 kgVinjebo
4
67 kgGarby
5
63 kgKragh Andersen
6
72 kgCoquard
7
59 kgHofland
8
71 kgLampaert
9
75 kgValgren
10
71 kgMarkus
11
75 kgHaller
13
72 kgMcCarthy
15
63 kgDe Mesmaeker
16
68 kgKragh Andersen
20
73 kgClancy
21
63 kgFolsach
26
81 kg
Weight (KG) →
Result →
81
59
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | KELDERMAN Wilco | 65 |
2 | CORT Magnus | 68 |
3 | VAN HOECKE Gijs | 78 |
4 | VINJEBO Emil Mielke | 67 |
5 | GARBY Marc Christian | 63 |
6 | KRAGH ANDERSEN Asbjørn | 72 |
7 | COQUARD Bryan | 59 |
8 | HOFLAND Moreno | 71 |
9 | LAMPAERT Yves | 75 |
10 | VALGREN Michael | 71 |
11 | MARKUS Barry | 75 |
13 | HALLER Marco | 72 |
15 | MCCARTHY Jay | 63 |
16 | DE MESMAEKER Kevin | 68 |
20 | KRAGH ANDERSEN Søren | 73 |
21 | CLANCY Stephen | 63 |
26 | FOLSACH Casper | 81 |