Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Bennati
1
71 kgHofland
2
71 kgWürtz Schmidt
3
70 kgCort
4
68 kgCapiot
5
69 kgJans
6
68 kgBaška
7
74 kgValgren
8
71 kgDe Vreese
9
78 kgGuardini
10
66 kgThwaites
11
71 kgSelig
12
80 kgde Vries
13
70 kgGogl
14
71 kgDeclercq
15
78 kgTeunissen
16
73 kgKamp
17
74 kgMarcato
19
67 kgWallays
21
64 kgGuldhammer
22
66 kgRuffoni
23
70 kgVan Asbroeck
24
72 kgAaen Jørgensen
25
63 kg
1
71 kgHofland
2
71 kgWürtz Schmidt
3
70 kgCort
4
68 kgCapiot
5
69 kgJans
6
68 kgBaška
7
74 kgValgren
8
71 kgDe Vreese
9
78 kgGuardini
10
66 kgThwaites
11
71 kgSelig
12
80 kgde Vries
13
70 kgGogl
14
71 kgDeclercq
15
78 kgTeunissen
16
73 kgKamp
17
74 kgMarcato
19
67 kgWallays
21
64 kgGuldhammer
22
66 kgRuffoni
23
70 kgVan Asbroeck
24
72 kgAaen Jørgensen
25
63 kg
Weight (KG) →
Result →
80
63
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | BENNATI Daniele | 71 |
2 | HOFLAND Moreno | 71 |
3 | WÜRTZ SCHMIDT Mads | 70 |
4 | CORT Magnus | 68 |
5 | CAPIOT Amaury | 69 |
6 | JANS Roy | 68 |
7 | BAŠKA Erik | 74 |
8 | VALGREN Michael | 71 |
9 | DE VREESE Laurens | 78 |
10 | GUARDINI Andrea | 66 |
11 | THWAITES Scott | 71 |
12 | SELIG Rüdiger | 80 |
13 | DE VRIES Berden | 70 |
14 | GOGL Michael | 71 |
15 | DECLERCQ Tim | 78 |
16 | TEUNISSEN Mike | 73 |
17 | KAMP Alexander | 74 |
19 | MARCATO Marco | 67 |
21 | WALLAYS Jens | 64 |
22 | GULDHAMMER Rasmus | 66 |
23 | RUFFONI Nicola | 70 |
24 | VAN ASBROECK Tom | 72 |
25 | AAEN JØRGENSEN Jonas | 63 |