Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Würtz Schmidt
1
70 kgHerklotz
2
68 kgCiccone
3
58 kgRahbek
4
66 kgPedersen
5
70 kgSchultz
6
60 kgVinjebo
7
67 kgVelasco
8
59 kgBauhaus
9
75 kgToudal
10
72 kgHonoré
12
68 kgFarazijn
13
73.5 kgLisson
14
73 kgBaška
15
74 kgAsgreen
16
75 kgDe Gendt
18
75 kgEg
19
60 kgVingegaard
20
58 kgStokbro
22
70 kgCarbel
23
73 kgGregaard
25
66 kgWallin
26
78 kg
1
70 kgHerklotz
2
68 kgCiccone
3
58 kgRahbek
4
66 kgPedersen
5
70 kgSchultz
6
60 kgVinjebo
7
67 kgVelasco
8
59 kgBauhaus
9
75 kgToudal
10
72 kgHonoré
12
68 kgFarazijn
13
73.5 kgLisson
14
73 kgBaška
15
74 kgAsgreen
16
75 kgDe Gendt
18
75 kgEg
19
60 kgVingegaard
20
58 kgStokbro
22
70 kgCarbel
23
73 kgGregaard
25
66 kgWallin
26
78 kg
Weight (KG) →
Result →
78
58
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | WÜRTZ SCHMIDT Mads | 70 |
2 | HERKLOTZ Silvio | 68 |
3 | CICCONE Giulio | 58 |
4 | RAHBEK Mads | 66 |
5 | PEDERSEN Mads | 70 |
6 | SCHULTZ Jesper | 60 |
7 | VINJEBO Emil Mielke | 67 |
8 | VELASCO Simone | 59 |
9 | BAUHAUS Phil | 75 |
10 | TOUDAL Emil | 72 |
12 | HONORÉ Mikkel Frølich | 68 |
13 | FARAZIJN Maxime | 73.5 |
14 | LISSON Christoffer | 73 |
15 | BAŠKA Erik | 74 |
16 | ASGREEN Kasper | 75 |
18 | DE GENDT Aimé | 75 |
19 | EG Niklas | 60 |
20 | VINGEGAARD Jonas | 58 |
22 | STOKBRO Andreas | 70 |
23 | CARBEL Michael | 73 |
25 | GREGAARD Jonas | 66 |
26 | WALLIN Rasmus Bøgh | 78 |