Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Pedersen
1
76 kgPedersen
2
71 kgGregaard
3
66 kgLisson
4
73 kgHonoré
5
68 kgSchultz
6
60 kgLarsen
7
74 kgFortunato
8
57 kgWallin
9
78 kgMaitre
10
71 kgGidich
11
69 kgCarbel
12
73 kgKanter
13
68 kgDe Vylder
15
70 kgHulgaard
16
73 kgConci
17
68 kgStokbro
18
70 kgEg
19
60 kgKron
20
63 kgIversen
22
77 kgBregnhøj
23
63 kgEgholm
24
69 kgKrigbaum
25
79 kg
1
76 kgPedersen
2
71 kgGregaard
3
66 kgLisson
4
73 kgHonoré
5
68 kgSchultz
6
60 kgLarsen
7
74 kgFortunato
8
57 kgWallin
9
78 kgMaitre
10
71 kgGidich
11
69 kgCarbel
12
73 kgKanter
13
68 kgDe Vylder
15
70 kgHulgaard
16
73 kgConci
17
68 kgStokbro
18
70 kgEg
19
60 kgKron
20
63 kgIversen
22
77 kgBregnhøj
23
63 kgEgholm
24
69 kgKrigbaum
25
79 kg
Weight (KG) →
Result →
79
57
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 76 |
2 | PEDERSEN Casper | 71 |
3 | GREGAARD Jonas | 66 |
4 | LISSON Christoffer | 73 |
5 | HONORÉ Mikkel Frølich | 68 |
6 | SCHULTZ Jesper | 60 |
7 | LARSEN Niklas | 74 |
8 | FORTUNATO Lorenzo | 57 |
9 | WALLIN Rasmus Bøgh | 78 |
10 | MAITRE Florian | 71 |
11 | GIDICH Yevgeniy | 69 |
12 | CARBEL Michael | 73 |
13 | KANTER Max | 68 |
15 | DE VYLDER Lindsay | 70 |
16 | HULGAARD Morten | 73 |
17 | CONCI Nicola | 68 |
18 | STOKBRO Andreas | 70 |
19 | EG Niklas | 60 |
20 | KRON Andreas | 63 |
22 | IVERSEN Rasmus Byriel | 77 |
23 | BREGNHØJ Mathias | 63 |
24 | EGHOLM Jakob | 69 |
25 | KRIGBAUM Mathias | 79 |