Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 11
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Benoot
1
72 kgDe Buyst
2
72 kgCapiot
3
69 kgLarsen
4
74 kgWeemaes
5
73 kgNeilands
6
69 kgJansen
7
83 kgVangstad
8
70 kgWürtz Schmidt
9
70 kgTræen
10
63 kgMerlier
11
76 kgCoquard
12
59 kgAbrahamsen
13
78 kgSkot-Hansen
15
62 kgCarbel
16
73 kgvan Ginneken
17
72 kgSimion
18
79 kg
1
72 kgDe Buyst
2
72 kgCapiot
3
69 kgLarsen
4
74 kgWeemaes
5
73 kgNeilands
6
69 kgJansen
7
83 kgVangstad
8
70 kgWürtz Schmidt
9
70 kgTræen
10
63 kgMerlier
11
76 kgCoquard
12
59 kgAbrahamsen
13
78 kgSkot-Hansen
15
62 kgCarbel
16
73 kgvan Ginneken
17
72 kgSimion
18
79 kg
Weight (KG) →
Result →
83
59
1
18
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | BENOOT Tiesj | 72 |
| 2 | DE BUYST Jasper | 72 |
| 3 | CAPIOT Amaury | 69 |
| 4 | LARSEN Niklas | 74 |
| 5 | WEEMAES Sasha | 73 |
| 6 | NEILANDS Krists | 69 |
| 7 | JANSEN Amund Grøndahl | 83 |
| 8 | VANGSTAD Andreas | 70 |
| 9 | WÜRTZ SCHMIDT Mads | 70 |
| 10 | TRÆEN Torstein | 63 |
| 11 | MERLIER Tim | 76 |
| 12 | COQUARD Bryan | 59 |
| 13 | ABRAHAMSEN Jonas | 78 |
| 15 | SKOT-HANSEN Aksel Bech | 62 |
| 16 | CARBEL Michael | 73 |
| 17 | VAN GINNEKEN Sjoerd | 72 |
| 18 | SIMION Paolo | 79 |