Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Larsen
1
74 kgBjerg
2
78 kgVan Moer
3
79 kgGarrison
4
76 kgStork
5
65 kgVerwilst
6
68 kgEenkhoorn
7
72 kgCarvalho
8
66 kgSalmon
9
59 kgKooistra
10
74 kgBudziński
11
70 kgAaskov Pallesen
12
60 kgIversen
13
77 kgIrvine
14
75 kgThijssen
15
74 kgEgholm
17
69 kgZijlaard
18
73 kgJensen
20
75 kgBanaszek
21
75 kgJohansen
22
77 kgSkot-Hansen
23
62 kgWeemaes
24
73 kgRodenberg
25
73 kg
1
74 kgBjerg
2
78 kgVan Moer
3
79 kgGarrison
4
76 kgStork
5
65 kgVerwilst
6
68 kgEenkhoorn
7
72 kgCarvalho
8
66 kgSalmon
9
59 kgKooistra
10
74 kgBudziński
11
70 kgAaskov Pallesen
12
60 kgIversen
13
77 kgIrvine
14
75 kgThijssen
15
74 kgEgholm
17
69 kgZijlaard
18
73 kgJensen
20
75 kgBanaszek
21
75 kgJohansen
22
77 kgSkot-Hansen
23
62 kgWeemaes
24
73 kgRodenberg
25
73 kg
Weight (KG) →
Result →
79
59
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | LARSEN Niklas | 74 |
2 | BJERG Mikkel | 78 |
3 | VAN MOER Brent | 79 |
4 | GARRISON Ian | 76 |
5 | STORK Florian | 65 |
6 | VERWILST Aaron | 68 |
7 | EENKHOORN Pascal | 72 |
8 | CARVALHO André | 66 |
9 | SALMON Martin | 59 |
10 | KOOISTRA Marten | 74 |
11 | BUDZIŃSKI Marcin | 70 |
12 | AASKOV PALLESEN Jeppe | 60 |
13 | IVERSEN Rasmus Byriel | 77 |
14 | IRVINE Declan | 75 |
15 | THIJSSEN Gerben | 74 |
17 | EGHOLM Jakob | 69 |
18 | ZIJLAARD Maikel | 73 |
20 | JENSEN Frederik Irgens | 75 |
21 | BANASZEK Norbert | 75 |
22 | JOHANSEN Julius | 77 |
23 | SKOT-HANSEN Aksel Bech | 62 |
24 | WEEMAES Sasha | 73 |
25 | RODENBERG Frederik | 73 |