Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Groenewegen
1
70 kgNizzolo
2
72 kgPedersen
3
76 kgde Kleijn
4
68 kgBanaszek
5
75 kgCavendish
6
70 kgSteimle
7
73 kgVan der Sande
8
67 kgTiller
9
84 kgWallin
10
78 kgBol
11
83 kgTeunissen
12
73 kgDupont
13
72 kgQuaade
14
77 kgKaczmarek
15
66 kgVan Rooy
16
70 kgThijssen
17
74 kgMenten
18
68 kgSkjelmose
20
65 kgApers
21
70 kgVan Poucke
22
68 kgvan der Lijke
23
61 kg
1
70 kgNizzolo
2
72 kgPedersen
3
76 kgde Kleijn
4
68 kgBanaszek
5
75 kgCavendish
6
70 kgSteimle
7
73 kgVan der Sande
8
67 kgTiller
9
84 kgWallin
10
78 kgBol
11
83 kgTeunissen
12
73 kgDupont
13
72 kgQuaade
14
77 kgKaczmarek
15
66 kgVan Rooy
16
70 kgThijssen
17
74 kgMenten
18
68 kgSkjelmose
20
65 kgApers
21
70 kgVan Poucke
22
68 kgvan der Lijke
23
61 kg
Weight (KG) →
Result →
84
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | GROENEWEGEN Dylan | 70 |
2 | NIZZOLO Giacomo | 72 |
3 | PEDERSEN Mads | 76 |
4 | DE KLEIJN Arvid | 68 |
5 | BANASZEK Norbert | 75 |
6 | CAVENDISH Mark | 70 |
7 | STEIMLE Jannik | 73 |
8 | VAN DER SANDE Tosh | 67 |
9 | TILLER Rasmus | 84 |
10 | WALLIN Rasmus Bøgh | 78 |
11 | BOL Cees | 83 |
12 | TEUNISSEN Mike | 73 |
13 | DUPONT Timothy | 72 |
14 | QUAADE Rasmus | 77 |
15 | KACZMAREK Jakub | 66 |
16 | VAN ROOY Kenneth | 70 |
17 | THIJSSEN Gerben | 74 |
18 | MENTEN Milan | 68 |
20 | SKJELMOSE Mattias | 65 |
21 | APERS Ruben | 70 |
22 | VAN POUCKE Aaron | 68 |
23 | VAN DER LIJKE Nick | 61 |