Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 23
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Sheffield
1
73 kgSkjelmose
2
65 kgvan Dijke
3
74 kgBerckmoes
4
61 kgWandahl
5
61 kgAndresen
6
69 kgBraet
7
68 kgStrong
8
63 kgKooij
9
72 kgGudnitz
10
69 kgMengel
12
65 kgRaisberg
14
67 kgMalmberg
15
68 kgDahl
16
62 kgPedersen
17
74 kgKärsten
19
75 kgVernon
20
74 kgJones
23
82 kgHenneberg
24
67 kgFoldager
25
69 kg
1
73 kgSkjelmose
2
65 kgvan Dijke
3
74 kgBerckmoes
4
61 kgWandahl
5
61 kgAndresen
6
69 kgBraet
7
68 kgStrong
8
63 kgKooij
9
72 kgGudnitz
10
69 kgMengel
12
65 kgRaisberg
14
67 kgMalmberg
15
68 kgDahl
16
62 kgPedersen
17
74 kgKärsten
19
75 kgVernon
20
74 kgJones
23
82 kgHenneberg
24
67 kgFoldager
25
69 kg
Weight (KG) →
Result →
82
61
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | SHEFFIELD Magnus | 73 |
2 | SKJELMOSE Mattias | 65 |
3 | VAN DIJKE Mick | 74 |
4 | BERCKMOES Jenno | 61 |
5 | WANDAHL Frederik | 61 |
6 | ANDRESEN Tobias Lund | 69 |
7 | BRAET Vito | 68 |
8 | STRONG Corbin | 63 |
9 | KOOIJ Olav | 72 |
10 | GUDNITZ Joshua | 69 |
12 | MENGEL Nikolaj | 65 |
14 | RAISBERG Nadav | 67 |
15 | MALMBERG Matias | 68 |
16 | DAHL Gustav Frederik | 62 |
17 | PEDERSEN Rasmus Søjberg | 74 |
19 | KÄRSTEN Moritz | 75 |
20 | VERNON Ethan | 74 |
23 | JONES Taj | 82 |
24 | HENNEBERG Magnus | 67 |
25 | FOLDAGER Anders | 69 |