Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 45
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Cort
1
68 kgAndresen
2
69 kgDe Lie
3
78 kgvan den Broek
4
70 kgBerckmoes
5
61 kgKragh Andersen
6
73 kgOliveira
7
68 kgFoldager
8
69 kgGogl
9
71 kgFisher-Black
10
69 kgFlynn
11
67 kgBjerg
12
78 kgBax
13
78 kgTrentin
15
74 kgDe Buyst
16
72 kgPomorski
18
76 kgLeknessund
21
72 kgVermeersch
22
81 kgStampe
23
79 kg
1
68 kgAndresen
2
69 kgDe Lie
3
78 kgvan den Broek
4
70 kgBerckmoes
5
61 kgKragh Andersen
6
73 kgOliveira
7
68 kgFoldager
8
69 kgGogl
9
71 kgFisher-Black
10
69 kgFlynn
11
67 kgBjerg
12
78 kgBax
13
78 kgTrentin
15
74 kgDe Buyst
16
72 kgPomorski
18
76 kgLeknessund
21
72 kgVermeersch
22
81 kgStampe
23
79 kg
Weight (KG) →
Result →
81
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | CORT Magnus | 68 |
2 | ANDRESEN Tobias Lund | 69 |
3 | DE LIE Arnaud | 78 |
4 | VAN DEN BROEK Frank | 70 |
5 | BERCKMOES Jenno | 61 |
6 | KRAGH ANDERSEN Søren | 73 |
7 | OLIVEIRA Ivo | 68 |
8 | FOLDAGER Anders | 69 |
9 | GOGL Michael | 71 |
10 | FISHER-BLACK Finn | 69 |
11 | FLYNN Sean | 67 |
12 | BJERG Mikkel | 78 |
13 | BAX Sjoerd | 78 |
15 | TRENTIN Matteo | 74 |
16 | DE BUYST Jasper | 72 |
18 | POMORSKI Michał | 76 |
21 | LEKNESSUND Andreas | 72 |
22 | VERMEERSCH Florian | 81 |
23 | STAMPE Daniel | 79 |