Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.7 * weight + 329
This means that on average for every extra kilogram weight a rider loses -3.7 positions in the result.
Pedersen
1
76 kgKubiš
2
70 kgWærenskjold
3
92 kgDe Schuyteneer
4
74 kgZingle
6
67 kgLarsen
7
74 kgPhilipsen
8
75 kgJohansen
9
77 kgEekhoff
11
75 kgCrabbe
13
70 kgMalmberg
14
68 kgSkjelmose
15
65 kgRosenlund
16
72 kgVercouillie
17
66 kgDahl
21
68 kgMenten
23
68 kgFoldager
24
69 kgStokbro
991
70 kg
1
76 kgKubiš
2
70 kgWærenskjold
3
92 kgDe Schuyteneer
4
74 kgZingle
6
67 kgLarsen
7
74 kgPhilipsen
8
75 kgJohansen
9
77 kgEekhoff
11
75 kgCrabbe
13
70 kgMalmberg
14
68 kgSkjelmose
15
65 kgRosenlund
16
72 kgVercouillie
17
66 kgDahl
21
68 kgMenten
23
68 kgFoldager
24
69 kgStokbro
991
70 kg
Weight (KG) →
Result →
92
65
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 76 |
2 | KUBIŠ Lukáš | 70 |
3 | WÆRENSKJOLD Søren | 92 |
4 | DE SCHUYTENEER Steffen | 74 |
6 | ZINGLE Axel | 67 |
7 | LARSEN Niklas | 74 |
8 | PHILIPSEN Jasper | 75 |
9 | JOHANSEN Julius | 77 |
11 | EEKHOFF Nils | 75 |
13 | CRABBE Tom | 70 |
14 | MALMBERG Matias | 68 |
15 | SKJELMOSE Mattias | 65 |
16 | ROSENLUND Stian | 72 |
17 | VERCOUILLIE Victor | 66 |
21 | DAHL Marius Innhaug | 68 |
23 | MENTEN Milan | 68 |
24 | FOLDAGER Anders | 69 |
991 | STOKBRO Andreas | 70 |