Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Sohrabi
1
69 kgPark
3
73 kgWong
5
65 kgSaleh
10
58 kgManulang
11
59 kgZargari
20
62 kgPriya Prasetya
22
62 kgMukaigawa
24
64 kgWijaya
26
58 kgAbe
40
67 kgSai-udomsin
42
60 kgMizbani
50
67 kgGlasner
52
72 kgAskari
53
73 kgSaeidi Tanha
57
70 kgCrawford
62
59 kgWu
63
68 kg
1
69 kgPark
3
73 kgWong
5
65 kgSaleh
10
58 kgManulang
11
59 kgZargari
20
62 kgPriya Prasetya
22
62 kgMukaigawa
24
64 kgWijaya
26
58 kgAbe
40
67 kgSai-udomsin
42
60 kgMizbani
50
67 kgGlasner
52
72 kgAskari
53
73 kgSaeidi Tanha
57
70 kgCrawford
62
59 kgWu
63
68 kg
Weight (KG) →
Result →
73
58
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | SOHRABI Mehdi | 69 |
3 | PARK Sung Baek | 73 |
5 | WONG Kam-Po | 65 |
10 | SALEH Mohd Zamri | 58 |
11 | MANULANG Robin | 59 |
20 | ZARGARI Amir | 62 |
22 | PRIYA PRASETYA Heksa | 62 |
24 | MUKAIGAWA Naoki | 64 |
26 | WIJAYA Endra | 58 |
40 | ABE Yoshiyuki | 67 |
42 | SAI-UDOMSIN Phuchong | 60 |
50 | MIZBANI Ghader | 67 |
52 | GLASNER Björn | 72 |
53 | ASKARI Hossein | 73 |
57 | SAEIDI TANHA Abbas | 70 |
62 | CRAWFORD Jai | 59 |
63 | WU Kin San | 68 |