Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.3 * weight + 201
This means that on average for every extra kilogram weight a rider loses -2.3 positions in the result.
Shpilevsky
1
78 kgKadlec
4
70 kgLahsaini
8
77 kgVeldt
10
78 kgBaasankhuu
17
62 kgSai-udomsin
20
60 kgSirironnachai
25
61 kgKers
42
71 kgBoonratanathanakorn
43
72 kgSisr
47
72 kgFelipe
49
58 kgEvans
51
70 kgChan
53
70 kgLiphongyu
81
61 kgKhalmuratov
85
68 kgWang
89
65 kgGaledo
90
58 kgZulkifli
103
65 kg
1
78 kgKadlec
4
70 kgLahsaini
8
77 kgVeldt
10
78 kgBaasankhuu
17
62 kgSai-udomsin
20
60 kgSirironnachai
25
61 kgKers
42
71 kgBoonratanathanakorn
43
72 kgSisr
47
72 kgFelipe
49
58 kgEvans
51
70 kgChan
53
70 kgLiphongyu
81
61 kgKhalmuratov
85
68 kgWang
89
65 kgGaledo
90
58 kgZulkifli
103
65 kg
Weight (KG) →
Result →
78
58
1
103
# | Rider | Weight (KG) |
---|---|---|
1 | SHPILEVSKY Boris | 78 |
4 | KADLEC Milan | 70 |
8 | LAHSAINI Mouhssine | 77 |
10 | VELDT Tim | 78 |
17 | BAASANKHUU Myagmarsuren | 62 |
20 | SAI-UDOMSIN Phuchong | 60 |
25 | SIRIRONNACHAI Sarawut | 61 |
42 | KERS Koos Jeroen | 71 |
43 | BOONRATANATHANAKORN Turakit | 72 |
47 | SISR František | 72 |
49 | FELIPE Marcelo | 58 |
51 | EVANS Brad | 70 |
53 | CHAN Chun Hing | 70 |
81 | LIPHONGYU Navuti | 61 |
85 | KHALMURATOV Muradjan | 68 |
89 | WANG Zhen | 65 |
90 | GALEDO Mark John Lexer | 58 |
103 | ZULKIFLI Nik Mohamad Azman | 65 |