Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Kers
2
71 kgKadlec
3
70 kgLiphongyu
9
61 kgChan
10
70 kgSai-udomsin
12
60 kgBoonratanathanakorn
14
72 kgLahsaini
19
77 kgSirironnachai
31
61 kgZulkifli
37
65 kgBaasankhuu
38
62 kgVeldt
45
78 kgEvans
51
70 kgFelipe
65
58 kgWang
68
65 kgSisr
69
72 kgGaledo
87
58 kgShpilevsky
100
78 kgKhalmuratov
101
68 kg
2
71 kgKadlec
3
70 kgLiphongyu
9
61 kgChan
10
70 kgSai-udomsin
12
60 kgBoonratanathanakorn
14
72 kgLahsaini
19
77 kgSirironnachai
31
61 kgZulkifli
37
65 kgBaasankhuu
38
62 kgVeldt
45
78 kgEvans
51
70 kgFelipe
65
58 kgWang
68
65 kgSisr
69
72 kgGaledo
87
58 kgShpilevsky
100
78 kgKhalmuratov
101
68 kg
Weight (KG) →
Result →
78
58
2
101
# | Rider | Weight (KG) |
---|---|---|
2 | KERS Koos Jeroen | 71 |
3 | KADLEC Milan | 70 |
9 | LIPHONGYU Navuti | 61 |
10 | CHAN Chun Hing | 70 |
12 | SAI-UDOMSIN Phuchong | 60 |
14 | BOONRATANATHANAKORN Turakit | 72 |
19 | LAHSAINI Mouhssine | 77 |
31 | SIRIRONNACHAI Sarawut | 61 |
37 | ZULKIFLI Nik Mohamad Azman | 65 |
38 | BAASANKHUU Myagmarsuren | 62 |
45 | VELDT Tim | 78 |
51 | EVANS Brad | 70 |
65 | FELIPE Marcelo | 58 |
68 | WANG Zhen | 65 |
69 | SISR František | 72 |
87 | GALEDO Mark John Lexer | 58 |
100 | SHPILEVSKY Boris | 78 |
101 | KHALMURATOV Muradjan | 68 |