Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Kadlec
3
70 kgKers
5
71 kgSirironnachai
8
61 kgShpilevsky
9
78 kgBoonratanathanakorn
11
72 kgSai-udomsin
12
60 kgLiphongyu
27
61 kgBaasankhuu
28
62 kgFelipe
34
58 kgEvans
38
70 kgSisr
51
72 kgChan
56
70 kgVeldt
57
78 kgGaledo
60
58 kgKhalmuratov
69
68 kgWang
85
65 kgZulkifli
88
65 kgLahsaini
101
77 kg
3
70 kgKers
5
71 kgSirironnachai
8
61 kgShpilevsky
9
78 kgBoonratanathanakorn
11
72 kgSai-udomsin
12
60 kgLiphongyu
27
61 kgBaasankhuu
28
62 kgFelipe
34
58 kgEvans
38
70 kgSisr
51
72 kgChan
56
70 kgVeldt
57
78 kgGaledo
60
58 kgKhalmuratov
69
68 kgWang
85
65 kgZulkifli
88
65 kgLahsaini
101
77 kg
Weight (KG) →
Result →
78
58
3
101
# | Rider | Weight (KG) |
---|---|---|
3 | KADLEC Milan | 70 |
5 | KERS Koos Jeroen | 71 |
8 | SIRIRONNACHAI Sarawut | 61 |
9 | SHPILEVSKY Boris | 78 |
11 | BOONRATANATHANAKORN Turakit | 72 |
12 | SAI-UDOMSIN Phuchong | 60 |
27 | LIPHONGYU Navuti | 61 |
28 | BAASANKHUU Myagmarsuren | 62 |
34 | FELIPE Marcelo | 58 |
38 | EVANS Brad | 70 |
51 | SISR František | 72 |
56 | CHAN Chun Hing | 70 |
57 | VELDT Tim | 78 |
60 | GALEDO Mark John Lexer | 58 |
69 | KHALMURATOV Muradjan | 68 |
85 | WANG Zhen | 65 |
88 | ZULKIFLI Nik Mohamad Azman | 65 |
101 | LAHSAINI Mouhssine | 77 |