Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Bogdanovičs
1
68 kgBazhkou
3
65 kgGroves
5
76 kgHindley
7
60 kgMohd Zariff
11
63 kgTzortzakis
13
80 kgVasylyuk
14
65 kgMonsalve
15
62 kgPrevar
17
64 kgOkamoto
19
65 kgSumiyoshi
20
56 kgAhmad
23
66 kgBudyak
24
53 kgChoi
25
53 kgMazuki
29
57 kgColli
31
73 kgRamanau
38
68 kg
1
68 kgBazhkou
3
65 kgGroves
5
76 kgHindley
7
60 kgMohd Zariff
11
63 kgTzortzakis
13
80 kgVasylyuk
14
65 kgMonsalve
15
62 kgPrevar
17
64 kgOkamoto
19
65 kgSumiyoshi
20
56 kgAhmad
23
66 kgBudyak
24
53 kgChoi
25
53 kgMazuki
29
57 kgColli
31
73 kgRamanau
38
68 kg
Weight (KG) →
Result →
80
53
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | BOGDANOVIČS Māris | 68 |
3 | BAZHKOU Stanislau | 65 |
5 | GROVES Kaden | 76 |
7 | HINDLEY Jai | 60 |
11 | MOHD ZARIFF Muhammad Nur Aiman | 63 |
13 | TZORTZAKIS Polychronis | 80 |
14 | VASYLYUK Andriy | 65 |
15 | MONSALVE Yonathan | 62 |
17 | PREVAR Oleksandr | 64 |
19 | OKAMOTO Hayato | 65 |
20 | SUMIYOSHI Kota | 56 |
23 | AHMAD Muhammad Ameer | 66 |
24 | BUDYAK Anatoliy | 53 |
25 | CHOI Hiu Fung | 53 |
29 | MAZUKI Nur Amirul Fakhruddin | 57 |
31 | COLLI Daniele | 73 |
38 | RAMANAU Raman | 68 |