Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Dyball
3
63 kgSlik
4
71 kgKennett
5
75 kgRohde
6
75 kgGroves
8
76 kgPavlič
11
65 kgOkamoto
12
65 kgDebesay
13
63 kgLakasek
14
71 kgTesfatsion
16
60 kgEefting-Bloem
17
75 kgde Jonge
18
65 kgStrokau
19
74 kgMazuki
20
57 kgFinkšt
21
70 kgBazhkou
22
65 kgMuzychkin
24
76 kgStöhr
25
72 kgGrošelj
27
70 kgFrahm
28
90 kgShumov
29
65 kg
3
63 kgSlik
4
71 kgKennett
5
75 kgRohde
6
75 kgGroves
8
76 kgPavlič
11
65 kgOkamoto
12
65 kgDebesay
13
63 kgLakasek
14
71 kgTesfatsion
16
60 kgEefting-Bloem
17
75 kgde Jonge
18
65 kgStrokau
19
74 kgMazuki
20
57 kgFinkšt
21
70 kgBazhkou
22
65 kgMuzychkin
24
76 kgStöhr
25
72 kgGrošelj
27
70 kgFrahm
28
90 kgShumov
29
65 kg
Weight (KG) →
Result →
90
57
3
29
# | Rider | Weight (KG) |
---|---|---|
3 | DYBALL Benjamin | 63 |
4 | SLIK Ivar | 71 |
5 | KENNETT Dylan | 75 |
6 | ROHDE Leon | 75 |
8 | GROVES Kaden | 76 |
11 | PAVLIČ Marko | 65 |
12 | OKAMOTO Hayato | 65 |
13 | DEBESAY Yakob | 63 |
14 | LAKASEK Irwandie | 71 |
16 | TESFATSION Natnael | 60 |
17 | EEFTING-BLOEM Roy | 75 |
18 | DE JONGE Maarten | 65 |
19 | STROKAU Vasili | 74 |
20 | MAZUKI Nur Amirul Fakhruddin | 57 |
21 | FINKŠT Tilen | 70 |
22 | BAZHKOU Stanislau | 65 |
24 | MUZYCHKIN Anton | 76 |
25 | STÖHR Ján | 72 |
27 | GROŠELJ Matic | 70 |
28 | FRAHM Jasper | 90 |
29 | SHUMOV Nikolai | 65 |