Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Quick
2
77 kgTownsend
3
73 kgSlik
5
71 kgFedosseyev
8
61.5 kgSmirnov
10
69 kgMazur
12
78 kgQuintero
14
63 kgLooij
15
75 kgVink
16
73 kgKasperkiewicz
18
71 kgOvechkin
19
61 kgPeng
22
65 kgGonov
23
76 kgSyritsa
24
85 kgFeng
25
68 kgOthman
27
57 kgMuzychkin
29
76 kgEl Fares
30
62 kgIderbold
31
58 kg
2
77 kgTownsend
3
73 kgSlik
5
71 kgFedosseyev
8
61.5 kgSmirnov
10
69 kgMazur
12
78 kgQuintero
14
63 kgLooij
15
75 kgVink
16
73 kgKasperkiewicz
18
71 kgOvechkin
19
61 kgPeng
22
65 kgGonov
23
76 kgSyritsa
24
85 kgFeng
25
68 kgOthman
27
57 kgMuzychkin
29
76 kgEl Fares
30
62 kgIderbold
31
58 kg
Weight (KG) →
Result →
85
57
2
31
# | Rider | Weight (KG) |
---|---|---|
2 | QUICK Blake | 77 |
3 | TOWNSEND Rory | 73 |
5 | SLIK Ivar | 71 |
8 | FEDOSSEYEV Artur | 61.5 |
10 | SMIRNOV Aleksandr | 69 |
12 | MAZUR Dzianis | 78 |
14 | QUINTERO Carlos | 63 |
15 | LOOIJ André | 75 |
16 | VINK Michael | 73 |
18 | KASPERKIEWICZ Przemysław | 71 |
19 | OVECHKIN Artem | 61 |
22 | PENG Yuan Tang | 65 |
23 | GONOV Lev | 76 |
24 | SYRITSA Gleb | 85 |
25 | FENG Chun Kai | 68 |
27 | OTHMAN Muhamad Afiq Husaine | 57 |
29 | MUZYCHKIN Anton | 76 |
30 | EL FARES Julien | 62 |
31 | IDERBOLD Bold | 58 |