Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Townsend
1
73 kgQuick
2
77 kgQuintero
5
63 kgSlik
7
71 kgFedosseyev
10
61.5 kgSmirnov
12
83 kgSmirnov
13
69 kgMazur
15
78 kgGonov
17
76 kgLooij
18
75 kgVink
19
73 kgKasperkiewicz
20
71 kgVolkers
21
67 kgOvechkin
22
61 kgEl Fares
23
62 kgCavanagh
24
72 kgPeng
27
65 kgFeng
28
68 kgSyritsa
30
85 kgOthman
31
57 kgMuzychkin
34
76 kgDe Rossi
35
70 kg
1
73 kgQuick
2
77 kgQuintero
5
63 kgSlik
7
71 kgFedosseyev
10
61.5 kgSmirnov
12
83 kgSmirnov
13
69 kgMazur
15
78 kgGonov
17
76 kgLooij
18
75 kgVink
19
73 kgKasperkiewicz
20
71 kgVolkers
21
67 kgOvechkin
22
61 kgEl Fares
23
62 kgCavanagh
24
72 kgPeng
27
65 kgFeng
28
68 kgSyritsa
30
85 kgOthman
31
57 kgMuzychkin
34
76 kgDe Rossi
35
70 kg
Weight (KG) →
Result →
85
57
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | TOWNSEND Rory | 73 |
2 | QUICK Blake | 77 |
5 | QUINTERO Carlos | 63 |
7 | SLIK Ivar | 71 |
10 | FEDOSSEYEV Artur | 61.5 |
12 | SMIRNOV Ivan | 83 |
13 | SMIRNOV Aleksandr | 69 |
15 | MAZUR Dzianis | 78 |
17 | GONOV Lev | 76 |
18 | LOOIJ André | 75 |
19 | VINK Michael | 73 |
20 | KASPERKIEWICZ Przemysław | 71 |
21 | VOLKERS Samuel | 67 |
22 | OVECHKIN Artem | 61 |
23 | EL FARES Julien | 62 |
24 | CAVANAGH Ryan | 72 |
27 | PENG Yuan Tang | 65 |
28 | FENG Chun Kai | 68 |
30 | SYRITSA Gleb | 85 |
31 | OTHMAN Muhamad Afiq Husaine | 57 |
34 | MUZYCHKIN Anton | 76 |
35 | DE ROSSI Lucas | 70 |