Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Quick
1
77 kgTownsend
2
73 kgGonov
4
76 kgQuintero
6
63 kgSlik
8
71 kgSyritsa
9
85 kgMazur
12
78 kgSmirnov
13
69 kgFedosseyev
14
61.5 kgSmirnov
16
83 kgPeng
17
65 kgFeng
20
68 kgEl Fares
21
62 kgLooij
22
75 kgVink
23
73 kgKasperkiewicz
24
71 kgOvechkin
27
61 kgCavanagh
29
72 kgOthman
34
57 kgMuzychkin
37
76 kgDe Rossi
38
70 kg
1
77 kgTownsend
2
73 kgGonov
4
76 kgQuintero
6
63 kgSlik
8
71 kgSyritsa
9
85 kgMazur
12
78 kgSmirnov
13
69 kgFedosseyev
14
61.5 kgSmirnov
16
83 kgPeng
17
65 kgFeng
20
68 kgEl Fares
21
62 kgLooij
22
75 kgVink
23
73 kgKasperkiewicz
24
71 kgOvechkin
27
61 kgCavanagh
29
72 kgOthman
34
57 kgMuzychkin
37
76 kgDe Rossi
38
70 kg
Weight (KG) →
Result →
85
57
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | QUICK Blake | 77 |
2 | TOWNSEND Rory | 73 |
4 | GONOV Lev | 76 |
6 | QUINTERO Carlos | 63 |
8 | SLIK Ivar | 71 |
9 | SYRITSA Gleb | 85 |
12 | MAZUR Dzianis | 78 |
13 | SMIRNOV Aleksandr | 69 |
14 | FEDOSSEYEV Artur | 61.5 |
16 | SMIRNOV Ivan | 83 |
17 | PENG Yuan Tang | 65 |
20 | FENG Chun Kai | 68 |
21 | EL FARES Julien | 62 |
22 | LOOIJ André | 75 |
23 | VINK Michael | 73 |
24 | KASPERKIEWICZ Przemysław | 71 |
27 | OVECHKIN Artem | 61 |
29 | CAVANAGH Ryan | 72 |
34 | OTHMAN Muhamad Afiq Husaine | 57 |
37 | MUZYCHKIN Anton | 76 |
38 | DE ROSSI Lucas | 70 |