Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -9.6 * weight + 1560
This means that on average for every extra kilogram weight a rider loses -9.6 positions in the result.
Jeker
2
72 kgRominger
990
65 kgDufaux
990
60 kgArmstrong
990
72 kgMurguialday
990
58 kgZberg
990
72 kgUgrumov
990
58 kgBruyneel
990
71 kgBaguet
990
67 kgPérez Rodríguez
990
67 kgHodge
990
74 kgEscartín
990
61 kgHerrera
990
57 kgGianetti
990
62 kgKelly
990
77 kgLlaneras
990
65 kg
2
72 kgRominger
990
65 kgDufaux
990
60 kgArmstrong
990
72 kgMurguialday
990
58 kgZberg
990
72 kgUgrumov
990
58 kgBruyneel
990
71 kgBaguet
990
67 kgPérez Rodríguez
990
67 kgHodge
990
74 kgEscartín
990
61 kgHerrera
990
57 kgGianetti
990
62 kgKelly
990
77 kgLlaneras
990
65 kg
Weight (KG) →
Result →
77
57
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | JEKER Fabian | 72 |
990 | ROMINGER Tony | 65 |
990 | DUFAUX Laurent | 60 |
990 | ARMSTRONG Lance | 72 |
990 | MURGUIALDAY Javier | 58 |
990 | ZBERG Beat | 72 |
990 | UGRUMOV Piotr | 58 |
990 | BRUYNEEL Johan | 71 |
990 | BAGUET Serge | 67 |
990 | PÉREZ RODRÍGUEZ Luis | 67 |
990 | HODGE Stephen | 74 |
990 | ESCARTÍN Fernando | 61 |
990 | HERRERA Luis Alberto | 57 |
990 | GIANETTI Mauro | 62 |
990 | KELLY Sean | 77 |
990 | LLANERAS Juan | 65 |