Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -26.6 * weight + 2474
This means that on average for every extra kilogram weight a rider loses -26.6 positions in the result.
Svorada
1
76 kgAggiano
3
63 kgBalducci
4
69 kgPetito
5
78 kgMartinello
6
71 kgSmetanine
7
69 kgPlanckaert
8
70 kgRodrigues
10
68 kgTchmil
990
75 kgTafi
990
73 kgEtxebarria
990
68 kgBouvard
990
70 kgBortolami
990
73 kgMazzanti
990
64 kgDomínguez
990
64 kgTeteriouk
990
72 kgGarmendia
990
68 kgCuesta
990
62 kgTonkov
990
70 kgMauri
990
68 kgGamito
990
66 kgHonchar
990
67 kg
1
76 kgAggiano
3
63 kgBalducci
4
69 kgPetito
5
78 kgMartinello
6
71 kgSmetanine
7
69 kgPlanckaert
8
70 kgRodrigues
10
68 kgTchmil
990
75 kgTafi
990
73 kgEtxebarria
990
68 kgBouvard
990
70 kgBortolami
990
73 kgMazzanti
990
64 kgDomínguez
990
64 kgTeteriouk
990
72 kgGarmendia
990
68 kgCuesta
990
62 kgTonkov
990
70 kgMauri
990
68 kgGamito
990
66 kgHonchar
990
67 kg
Weight (KG) →
Result →
78
62
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | SVORADA Ján | 76 |
3 | AGGIANO Elio | 63 |
4 | BALDUCCI Gabriele | 69 |
5 | PETITO Roberto | 78 |
6 | MARTINELLO Silvio | 71 |
7 | SMETANINE Serguei | 69 |
8 | PLANCKAERT Jo | 70 |
10 | RODRIGUES Orlando Sergio | 68 |
990 | TCHMIL Andrei | 75 |
990 | TAFI Andrea | 73 |
990 | ETXEBARRIA Unai | 68 |
990 | BOUVARD Gilles | 70 |
990 | BORTOLAMI Gianluca | 73 |
990 | MAZZANTI Luca | 64 |
990 | DOMÍNGUEZ Juan Carlos | 64 |
990 | TETERIOUK Andrei | 72 |
990 | GARMENDIA Aitor | 68 |
990 | CUESTA Iñigo | 62 |
990 | TONKOV Pavel | 70 |
990 | MAURI Melchor | 68 |
990 | GAMITO Vitor | 66 |
990 | HONCHAR Serhiy | 67 |