Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -7.4 * weight + 1129
This means that on average for every extra kilogram weight a rider loses -7.4 positions in the result.
Martinello
1
71 kgPlanckaert
3
70 kgBalducci
4
69 kgTchmil
5
75 kgRodrigues
6
68 kgTafi
8
73 kgAggiano
9
63 kgEtxebarria
10
68 kgSvorada
990
76 kgPetito
990
78 kgBouvard
990
70 kgBortolami
990
73 kgMazzanti
990
64 kgDomínguez
990
64 kgTeteriouk
990
72 kgGarmendia
990
68 kgCuesta
990
62 kgTonkov
990
70 kgMauri
990
68 kgGamito
990
66 kgHonchar
990
67 kg
1
71 kgPlanckaert
3
70 kgBalducci
4
69 kgTchmil
5
75 kgRodrigues
6
68 kgTafi
8
73 kgAggiano
9
63 kgEtxebarria
10
68 kgSvorada
990
76 kgPetito
990
78 kgBouvard
990
70 kgBortolami
990
73 kgMazzanti
990
64 kgDomínguez
990
64 kgTeteriouk
990
72 kgGarmendia
990
68 kgCuesta
990
62 kgTonkov
990
70 kgMauri
990
68 kgGamito
990
66 kgHonchar
990
67 kg
Weight (KG) →
Result →
78
62
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MARTINELLO Silvio | 71 |
3 | PLANCKAERT Jo | 70 |
4 | BALDUCCI Gabriele | 69 |
5 | TCHMIL Andrei | 75 |
6 | RODRIGUES Orlando Sergio | 68 |
8 | TAFI Andrea | 73 |
9 | AGGIANO Elio | 63 |
10 | ETXEBARRIA Unai | 68 |
990 | SVORADA Ján | 76 |
990 | PETITO Roberto | 78 |
990 | BOUVARD Gilles | 70 |
990 | BORTOLAMI Gianluca | 73 |
990 | MAZZANTI Luca | 64 |
990 | DOMÍNGUEZ Juan Carlos | 64 |
990 | TETERIOUK Andrei | 72 |
990 | GARMENDIA Aitor | 68 |
990 | CUESTA Iñigo | 62 |
990 | TONKOV Pavel | 70 |
990 | MAURI Melchor | 68 |
990 | GAMITO Vitor | 66 |
990 | HONCHAR Serhiy | 67 |