Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -29.9 * weight + 2744
This means that on average for every extra kilogram weight a rider loses -29.9 positions in the result.
Svorada
1
76 kgPlanckaert
2
70 kgMartinello
3
71 kgRodrigues
5
68 kgTafi
6
73 kgBouvard
9
70 kgPetito
990
78 kgTchmil
990
75 kgBortolami
990
73 kgMazzanti
990
64 kgDomínguez
990
64 kgTeteriouk
990
72 kgGarmendia
990
68 kgCuesta
990
62 kgTonkov
990
70 kgMauri
990
68 kgGamito
990
66 kgHonchar
990
67 kg
1
76 kgPlanckaert
2
70 kgMartinello
3
71 kgRodrigues
5
68 kgTafi
6
73 kgBouvard
9
70 kgPetito
990
78 kgTchmil
990
75 kgBortolami
990
73 kgMazzanti
990
64 kgDomínguez
990
64 kgTeteriouk
990
72 kgGarmendia
990
68 kgCuesta
990
62 kgTonkov
990
70 kgMauri
990
68 kgGamito
990
66 kgHonchar
990
67 kg
Weight (KG) →
Result →
78
62
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | SVORADA Ján | 76 |
2 | PLANCKAERT Jo | 70 |
3 | MARTINELLO Silvio | 71 |
5 | RODRIGUES Orlando Sergio | 68 |
6 | TAFI Andrea | 73 |
9 | BOUVARD Gilles | 70 |
990 | PETITO Roberto | 78 |
990 | TCHMIL Andrei | 75 |
990 | BORTOLAMI Gianluca | 73 |
990 | MAZZANTI Luca | 64 |
990 | DOMÍNGUEZ Juan Carlos | 64 |
990 | TETERIOUK Andrei | 72 |
990 | GARMENDIA Aitor | 68 |
990 | CUESTA Iñigo | 62 |
990 | TONKOV Pavel | 70 |
990 | MAURI Melchor | 68 |
990 | GAMITO Vitor | 66 |
990 | HONCHAR Serhiy | 67 |