Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Oss
1
75 kgRoche
2
70 kgWellens
3
71 kgDillier
4
75 kgMollema
5
64 kgClarke
6
81 kgWang
7
70 kgFerrari
8
64 kgIrisarri
9
66 kgLastra
10
64 kgCavagna
11
78 kgBico
12
64 kgMolina
13
57 kgTaaramäe
14
68 kgHaig
15
67 kgHermans
16
72 kgPoels
17
66 kgJuul-Jensen
18
73 kgDougall
19
72 kgHofstede
20
73 kgAmador
21
73 kgvan Baarle
22
78 kgCampenaerts
23
68 kg
1
75 kgRoche
2
70 kgWellens
3
71 kgDillier
4
75 kgMollema
5
64 kgClarke
6
81 kgWang
7
70 kgFerrari
8
64 kgIrisarri
9
66 kgLastra
10
64 kgCavagna
11
78 kgBico
12
64 kgMolina
13
57 kgTaaramäe
14
68 kgHaig
15
67 kgHermans
16
72 kgPoels
17
66 kgJuul-Jensen
18
73 kgDougall
19
72 kgHofstede
20
73 kgAmador
21
73 kgvan Baarle
22
78 kgCampenaerts
23
68 kg
Weight (KG) →
Result →
81
57
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | OSS Daniel | 75 |
2 | ROCHE Nicolas | 70 |
3 | WELLENS Tim | 71 |
4 | DILLIER Silvan | 75 |
5 | MOLLEMA Bauke | 64 |
6 | CLARKE Will | 81 |
7 | WANG Meiyin | 70 |
8 | FERRARI Fabricio | 64 |
9 | IRISARRI Jon | 66 |
10 | LASTRA Jonathan | 64 |
11 | CAVAGNA Rémi | 78 |
12 | BICO Nuno | 64 |
13 | MOLINA Antonio | 57 |
14 | TAARAMÄE Rein | 68 |
15 | HAIG Jack | 67 |
16 | HERMANS Ben | 72 |
17 | POELS Wout | 66 |
18 | JUUL-JENSEN Christopher | 73 |
19 | DOUGALL Nic | 72 |
20 | HOFSTEDE Lennard | 73 |
21 | AMADOR Andrey | 73 |
22 | VAN BAARLE Dylan | 78 |
23 | CAMPENAERTS Victor | 68 |