Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Ackermann
1
78 kgGaviria
2
71 kgTrentin
3
74 kgMcLay
4
72 kgCousin
5
74 kgČerný
6
75 kgMullen
7
77 kgHonoré
8
68 kgMareczko
9
67 kgBallerini
10
71 kgKoch
11
75 kgBauhaus
12
75 kgDe Vreese
13
78 kgVanmarcke
14
77 kgMoschetti
15
73 kgKanter
16
68 kgMartinelli
17
71 kgDupont
18
72 kgMinali
19
74 kgDegenkolb
20
82 kg
1
78 kgGaviria
2
71 kgTrentin
3
74 kgMcLay
4
72 kgCousin
5
74 kgČerný
6
75 kgMullen
7
77 kgHonoré
8
68 kgMareczko
9
67 kgBallerini
10
71 kgKoch
11
75 kgBauhaus
12
75 kgDe Vreese
13
78 kgVanmarcke
14
77 kgMoschetti
15
73 kgKanter
16
68 kgMartinelli
17
71 kgDupont
18
72 kgMinali
19
74 kgDegenkolb
20
82 kg
Weight (KG) →
Result →
82
67
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | ACKERMANN Pascal | 78 |
2 | GAVIRIA Fernando | 71 |
3 | TRENTIN Matteo | 74 |
4 | MCLAY Daniel | 72 |
5 | COUSIN Jérôme | 74 |
6 | ČERNÝ Josef | 75 |
7 | MULLEN Ryan | 77 |
8 | HONORÉ Mikkel Frølich | 68 |
9 | MARECZKO Jakub | 67 |
10 | BALLERINI Davide | 71 |
11 | KOCH Jonas | 75 |
12 | BAUHAUS Phil | 75 |
13 | DE VREESE Laurens | 78 |
14 | VANMARCKE Sep | 77 |
15 | MOSCHETTI Matteo | 73 |
16 | KANTER Max | 68 |
17 | MARTINELLI Davide | 71 |
18 | DUPONT Timothy | 72 |
19 | MINALI Riccardo | 74 |
20 | DEGENKOLB John | 82 |