Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Milan
1
87 kgDe Bondt
2
73 kgViviani
3
67 kgde Kleijn
4
68 kgBennett
5
73 kgKooij
6
72 kgMolano
7
72 kgDe Lie
8
78 kgKanter
9
68 kgReynders
10
76 kgGoldstein
11
61 kgChampion
12
66 kgNarváez
13
65 kgTaminiaux
14
74 kgWandahl
15
61 kgWalscheid
16
90 kgBarré
18
68 kgPlowright
19
80 kgSelig
20
80 kgAberasturi
21
69 kg
1
87 kgDe Bondt
2
73 kgViviani
3
67 kgde Kleijn
4
68 kgBennett
5
73 kgKooij
6
72 kgMolano
7
72 kgDe Lie
8
78 kgKanter
9
68 kgReynders
10
76 kgGoldstein
11
61 kgChampion
12
66 kgNarváez
13
65 kgTaminiaux
14
74 kgWandahl
15
61 kgWalscheid
16
90 kgBarré
18
68 kgPlowright
19
80 kgSelig
20
80 kgAberasturi
21
69 kg
Weight (KG) →
Result →
90
61
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | MILAN Jonathan | 87 |
2 | DE BONDT Dries | 73 |
3 | VIVIANI Elia | 67 |
4 | DE KLEIJN Arvid | 68 |
5 | BENNETT Sam | 73 |
6 | KOOIJ Olav | 72 |
7 | MOLANO Juan Sebastián | 72 |
8 | DE LIE Arnaud | 78 |
9 | KANTER Max | 68 |
10 | REYNDERS Jens | 76 |
11 | GOLDSTEIN Omer | 61 |
12 | CHAMPION Thomas | 66 |
13 | NARVÁEZ Jhonatan | 65 |
14 | TAMINIAUX Lionel | 74 |
15 | WANDAHL Frederik | 61 |
16 | WALSCHEID Max | 90 |
18 | BARRÉ Louis | 68 |
19 | PLOWRIGHT Jensen | 80 |
20 | SELIG Rüdiger | 80 |
21 | ABERASTURI Jon | 69 |