Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Wandahl
1
61 kgDe Bondt
2
73 kgMullen
3
77 kgHollmann
4
70 kgWellens
5
71 kgJacobs
6
78 kgGroßschartner
7
64 kgRodríguez
8
63 kgReynders
9
76 kgJorgenson
10
69 kgUrán
11
63 kgRochas
12
51 kgOnley
13
62 kgGoldstein
14
61 kgKanter
15
68 kgAdamietz
16
61 kgJohansen
17
77 kgHerregodts
18
70 kgSu
19
64 kgVink
20
73 kgŠtybar
21
68 kg
1
61 kgDe Bondt
2
73 kgMullen
3
77 kgHollmann
4
70 kgWellens
5
71 kgJacobs
6
78 kgGroßschartner
7
64 kgRodríguez
8
63 kgReynders
9
76 kgJorgenson
10
69 kgUrán
11
63 kgRochas
12
51 kgOnley
13
62 kgGoldstein
14
61 kgKanter
15
68 kgAdamietz
16
61 kgJohansen
17
77 kgHerregodts
18
70 kgSu
19
64 kgVink
20
73 kgŠtybar
21
68 kg
Weight (KG) →
Result →
78
51
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | WANDAHL Frederik | 61 |
2 | DE BONDT Dries | 73 |
3 | MULLEN Ryan | 77 |
4 | HOLLMANN Juri | 70 |
5 | WELLENS Tim | 71 |
6 | JACOBS Johan | 78 |
7 | GROßSCHARTNER Felix | 64 |
8 | RODRÍGUEZ Óscar | 63 |
9 | REYNDERS Jens | 76 |
10 | JORGENSON Matteo | 69 |
11 | URÁN Rigoberto | 63 |
12 | ROCHAS Rémy | 51 |
13 | ONLEY Oscar | 62 |
14 | GOLDSTEIN Omer | 61 |
15 | KANTER Max | 68 |
16 | ADAMIETZ Johannes | 61 |
17 | JOHANSEN Julius | 77 |
18 | HERREGODTS Rune | 70 |
19 | SU Haoyu | 64 |
20 | VINK Michael | 73 |
21 | ŠTYBAR Zdeněk | 68 |