Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Kanter
1
68 kgVangheluwe
2
79 kgTaminiaux
3
74 kgVan Hoecke
4
78 kgMolano
5
72 kgVernon
6
74 kgDewulf
7
74 kgMaciejuk
8
78 kgDe Bondt
9
73 kgHerregodts
10
70 kgStewart
11
66 kgGovekar
13
73 kgCimolai
14
70 kgQuick
15
77 kgRajović
16
74 kgFretin
17
70 kgStannard
18
74 kgSvrček
19
66 kgVermote
20
74 kgNarváez
21
65 kgPickrell
22
72 kgLamperti
23
74 kgTesfatsion
24
60 kg
1
68 kgVangheluwe
2
79 kgTaminiaux
3
74 kgVan Hoecke
4
78 kgMolano
5
72 kgVernon
6
74 kgDewulf
7
74 kgMaciejuk
8
78 kgDe Bondt
9
73 kgHerregodts
10
70 kgStewart
11
66 kgGovekar
13
73 kgCimolai
14
70 kgQuick
15
77 kgRajović
16
74 kgFretin
17
70 kgStannard
18
74 kgSvrček
19
66 kgVermote
20
74 kgNarváez
21
65 kgPickrell
22
72 kgLamperti
23
74 kgTesfatsion
24
60 kg
Weight (KG) →
Result →
79
60
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | KANTER Max | 68 |
2 | VANGHELUWE Warre | 79 |
3 | TAMINIAUX Lionel | 74 |
4 | VAN HOECKE Gijs | 78 |
5 | MOLANO Juan Sebastián | 72 |
6 | VERNON Ethan | 74 |
7 | DEWULF Stan | 74 |
8 | MACIEJUK Filip | 78 |
9 | DE BONDT Dries | 73 |
10 | HERREGODTS Rune | 70 |
11 | STEWART Jake | 66 |
13 | GOVEKAR Matevž | 73 |
14 | CIMOLAI Davide | 70 |
15 | QUICK Blake | 77 |
16 | RAJOVIĆ Dušan | 74 |
17 | FRETIN Milan | 70 |
18 | STANNARD Robert | 74 |
19 | SVRČEK Martin | 66 |
20 | VERMOTE Julien | 74 |
21 | NARVÁEZ Jhonatan | 65 |
22 | PICKRELL Riley | 72 |
23 | LAMPERTI Luke | 74 |
24 | TESFATSION Natnael | 60 |