Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hofland
1
71 kgSchnaidt
2
70 kgPeeters
3
67 kgLeezer
4
76 kgBos
5
77 kgBoom
6
75 kgAmorison
7
70 kgMartinez
8
69 kgvan Emden
9
78 kgMetlushenko
11
82 kgHonkisz
12
61 kgWilliams
13
75 kgJules
15
64 kgGonçalves
17
70 kgAverin
20
74 kgMatysiak
24
71 kgMcconvey
25
67 kgLapthorne
27
70 kgPremont
28
69 kg
1
71 kgSchnaidt
2
70 kgPeeters
3
67 kgLeezer
4
76 kgBos
5
77 kgBoom
6
75 kgAmorison
7
70 kgMartinez
8
69 kgvan Emden
9
78 kgMetlushenko
11
82 kgHonkisz
12
61 kgWilliams
13
75 kgJules
15
64 kgGonçalves
17
70 kgAverin
20
74 kgMatysiak
24
71 kgMcconvey
25
67 kgLapthorne
27
70 kgPremont
28
69 kg
Weight (KG) →
Result →
82
61
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | HOFLAND Moreno | 71 |
2 | SCHNAIDT Fabian | 70 |
3 | PEETERS Kevin | 67 |
4 | LEEZER Tom | 76 |
5 | BOS Theo | 77 |
6 | BOOM Lars | 75 |
7 | AMORISON Frédéric | 70 |
8 | MARTINEZ Yannick | 69 |
9 | VAN EMDEN Jos | 78 |
11 | METLUSHENKO Yuri | 82 |
12 | HONKISZ Adrian | 61 |
13 | WILLIAMS Christopher | 75 |
15 | JULES Justin | 64 |
17 | GONÇALVES José | 70 |
20 | AVERIN Maksym | 74 |
24 | MATYSIAK Bartłomiej | 71 |
25 | MCCONVEY Connor | 67 |
27 | LAPTHORNE Darren | 70 |
28 | PREMONT Christophe | 69 |