Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Hofland
1
71 kgSchnaidt
2
70 kgBos
3
77 kgBoom
4
75 kgMetlushenko
5
82 kgJules
6
64 kgPeeters
7
67 kgLeezer
8
76 kgGonçalves
10
70 kgAmorison
11
70 kgMartinez
12
69 kgvan Emden
13
78 kgVasylyuk
14
65 kgHonkisz
17
61 kgWilliams
19
75 kgAverin
25
74 kgShpilevsky
26
78 kgMatysiak
29
71 kgPremont
33
69 kgMcconvey
34
67 kgLapthorne
35
70 kgJabrayilov
36
52 kg
1
71 kgSchnaidt
2
70 kgBos
3
77 kgBoom
4
75 kgMetlushenko
5
82 kgJules
6
64 kgPeeters
7
67 kgLeezer
8
76 kgGonçalves
10
70 kgAmorison
11
70 kgMartinez
12
69 kgvan Emden
13
78 kgVasylyuk
14
65 kgHonkisz
17
61 kgWilliams
19
75 kgAverin
25
74 kgShpilevsky
26
78 kgMatysiak
29
71 kgPremont
33
69 kgMcconvey
34
67 kgLapthorne
35
70 kgJabrayilov
36
52 kg
Weight (KG) →
Result →
82
52
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | HOFLAND Moreno | 71 |
2 | SCHNAIDT Fabian | 70 |
3 | BOS Theo | 77 |
4 | BOOM Lars | 75 |
5 | METLUSHENKO Yuri | 82 |
6 | JULES Justin | 64 |
7 | PEETERS Kevin | 67 |
8 | LEEZER Tom | 76 |
10 | GONÇALVES José | 70 |
11 | AMORISON Frédéric | 70 |
12 | MARTINEZ Yannick | 69 |
13 | VAN EMDEN Jos | 78 |
14 | VASYLYUK Andriy | 65 |
17 | HONKISZ Adrian | 61 |
19 | WILLIAMS Christopher | 75 |
25 | AVERIN Maksym | 74 |
26 | SHPILEVSKY Boris | 78 |
29 | MATYSIAK Bartłomiej | 71 |
33 | PREMONT Christophe | 69 |
34 | MCCONVEY Connor | 67 |
35 | LAPTHORNE Darren | 70 |
36 | JABRAYILOV Samir | 52 |