Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bonifazio
1
72 kgPalini
2
67 kgHofland
3
71 kgWippert
5
75 kgWang
6
70 kgCantwell
7
69 kgKaňkovský
8
83 kgMetlushenko
9
82 kgBrown
10
76 kgFerrari
11
73 kgTleubayev
12
70 kgJules
14
64 kgShpilevsky
15
78 kgKamyshev
16
67 kgGonçalves
18
70 kgSaleh
19
70 kgKadlec
20
70 kgAsadov
21
77 kgPeron
23
70 kgAkdilek
25
68 kg
1
72 kgPalini
2
67 kgHofland
3
71 kgWippert
5
75 kgWang
6
70 kgCantwell
7
69 kgKaňkovský
8
83 kgMetlushenko
9
82 kgBrown
10
76 kgFerrari
11
73 kgTleubayev
12
70 kgJules
14
64 kgShpilevsky
15
78 kgKamyshev
16
67 kgGonçalves
18
70 kgSaleh
19
70 kgKadlec
20
70 kgAsadov
21
77 kgPeron
23
70 kgAkdilek
25
68 kg
Weight (KG) →
Result →
83
64
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | BONIFAZIO Niccolò | 72 |
2 | PALINI Andrea | 67 |
3 | HOFLAND Moreno | 71 |
5 | WIPPERT Wouter | 75 |
6 | WANG Meiyin | 70 |
7 | CANTWELL Jonathan | 69 |
8 | KAŇKOVSKÝ Alois | 83 |
9 | METLUSHENKO Yuri | 82 |
10 | BROWN Graeme Allen | 76 |
11 | FERRARI Roberto | 73 |
12 | TLEUBAYEV Ruslan | 70 |
14 | JULES Justin | 64 |
15 | SHPILEVSKY Boris | 78 |
16 | KAMYSHEV Arman | 67 |
18 | GONÇALVES Domingos | 70 |
19 | SALEH Mohd Harrif | 70 |
20 | KADLEC Milan | 70 |
21 | ASADOV Elchin | 77 |
23 | PERON Andrea | 70 |
25 | AKDILEK Ahmet | 68 |