Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Palini
1
67 kgSilvestre
2
78 kgModolo
3
67 kgGrosu
4
68 kgFerrari
5
73 kgGiraud
6
71 kgVaitkus
7
75 kgDal Col
8
80 kgVerschoor
9
74.5 kgTleubayev
10
70 kgLaas
11
76 kgJones
12
81 kgButs
13
68 kgKamyshev
14
67 kgEvans
15
70 kgLatoń
16
76 kgŠiškevičius
17
80 kgColli
18
73 kgAlizadeh
19
62 kgHaddi
21
63 kgSaleh
22
70 kgWilliams
24
75 kg
1
67 kgSilvestre
2
78 kgModolo
3
67 kgGrosu
4
68 kgFerrari
5
73 kgGiraud
6
71 kgVaitkus
7
75 kgDal Col
8
80 kgVerschoor
9
74.5 kgTleubayev
10
70 kgLaas
11
76 kgJones
12
81 kgButs
13
68 kgKamyshev
14
67 kgEvans
15
70 kgLatoń
16
76 kgŠiškevičius
17
80 kgColli
18
73 kgAlizadeh
19
62 kgHaddi
21
63 kgSaleh
22
70 kgWilliams
24
75 kg
Weight (KG) →
Result →
81
62
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | PALINI Andrea | 67 |
2 | SILVESTRE Fábio | 78 |
3 | MODOLO Sacha | 67 |
4 | GROSU Eduard-Michael | 68 |
5 | FERRARI Roberto | 73 |
6 | GIRAUD Benjamin | 71 |
7 | VAITKUS Tomas | 75 |
8 | DAL COL Andrea | 80 |
9 | VERSCHOOR Martijn | 74.5 |
10 | TLEUBAYEV Ruslan | 70 |
11 | LAAS Martin | 76 |
12 | JONES Brenton | 81 |
13 | BUTS Vitaliy | 68 |
14 | KAMYSHEV Arman | 67 |
15 | EVANS Brad | 70 |
16 | LATOŃ Eryk | 76 |
17 | ŠIŠKEVIČIUS Evaldas | 80 |
18 | COLLI Daniele | 73 |
19 | ALIZADEH Hossein | 62 |
21 | HADDI Soufiane | 63 |
22 | SALEH Mohd Harrif | 70 |
24 | WILLIAMS Christopher | 75 |