Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Jackson
1
75 kgDalla Valle
2
73 kgCarstensen
3
69 kgSaleh
4
70 kgBanaszek
6
75 kgConti
7
61 kgHopkins
8
74 kgTzortzakis
9
80 kgJones
10
82 kgQuartucci
11
64 kgBat-Erdene
12
73 kgZambelli
13
70 kgBogdanovičs
14
68 kgSmit
15
72 kgLakasek
16
71 kgSexton
17
71 kgBeadle
18
64 kg
1
75 kgDalla Valle
2
73 kgCarstensen
3
69 kgSaleh
4
70 kgBanaszek
6
75 kgConti
7
61 kgHopkins
8
74 kgTzortzakis
9
80 kgJones
10
82 kgQuartucci
11
64 kgBat-Erdene
12
73 kgZambelli
13
70 kgBogdanovičs
14
68 kgSmit
15
72 kgLakasek
16
71 kgSexton
17
71 kgBeadle
18
64 kg
Weight (KG) →
Result →
82
61
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | JACKSON George | 75 |
2 | DALLA VALLE Nicolas | 73 |
3 | CARSTENSEN Lucas | 69 |
4 | SALEH Mohd Harrif | 70 |
6 | BANASZEK Norbert | 75 |
7 | CONTI Valerio | 61 |
8 | HOPKINS Dylan | 74 |
9 | TZORTZAKIS Polychronis | 80 |
10 | JONES Taj | 82 |
11 | QUARTUCCI Lorenzo | 64 |
12 | BAT-ERDENE Narankhuu | 73 |
13 | ZAMBELLI Samuele | 70 |
14 | BOGDANOVIČS Māris | 68 |
15 | SMIT Willie | 72 |
16 | LAKASEK Irwandie | 71 |
17 | SEXTON Tom | 71 |
18 | BEADLE Hamish | 64 |