Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Malucelli
1
68 kgRajović
2
74 kgVahtra
3
85 kgScott
4
80 kgLaas
5
76 kgSalby
6
68 kgPeñalver
7
67 kgHodeg
8
76 kgCavia
9
62 kgGonov
11
76 kgHamdan
12
66 kgRasch
13
71 kgGrosu
14
68 kgParedes
15
66 kgMonk
16
67 kgLópez de Abetxuko
19
74 kgMulubrhan
20
60 kgSexton
22
71 kgGate
23
71 kgAlleno
24
69 kgGidich
25
69 kgvan Engelen
26
51 kg
1
68 kgRajović
2
74 kgVahtra
3
85 kgScott
4
80 kgLaas
5
76 kgSalby
6
68 kgPeñalver
7
67 kgHodeg
8
76 kgCavia
9
62 kgGonov
11
76 kgHamdan
12
66 kgRasch
13
71 kgGrosu
14
68 kgParedes
15
66 kgMonk
16
67 kgLópez de Abetxuko
19
74 kgMulubrhan
20
60 kgSexton
22
71 kgGate
23
71 kgAlleno
24
69 kgGidich
25
69 kgvan Engelen
26
51 kg
Weight (KG) →
Result →
85
51
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | MALUCELLI Matteo | 68 |
2 | RAJOVIĆ Dušan | 74 |
3 | VAHTRA Norman | 85 |
4 | SCOTT Cameron | 80 |
5 | LAAS Martin | 76 |
6 | SALBY Alexander | 68 |
7 | PEÑALVER Manuel | 67 |
8 | HODEG Álvaro José | 76 |
9 | CAVIA Daniel | 62 |
11 | GONOV Lev | 76 |
12 | HAMDAN Wan Abdul Rahman | 66 |
13 | RASCH Jesper | 71 |
14 | GROSU Eduard-Michael | 68 |
15 | PAREDES Wilmar | 66 |
16 | MONK Cyrus | 67 |
19 | LÓPEZ DE ABETXUKO Andoni | 74 |
20 | MULUBRHAN Henok | 60 |
22 | SEXTON Tom | 71 |
23 | GATE Aaron | 71 |
24 | ALLENO Clément | 69 |
25 | GIDICH Yevgeniy | 69 |
26 | VAN ENGELEN Adne | 51 |