Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Maikin
1
68 kgRajović
2
74 kgRäim
3
69 kgPopov
4
75 kgHabteab
6
61 kgLauk
7
69 kgLaas
8
76 kgKoning
9
72 kgRikunov
10
71 kgCarman
11
66 kgJanse van Rensburg
12
74 kgvan Engelen
13
51 kgAvondts
18
62 kgNisu
20
84 kgHohmann
21
73 kgKim
22
68 kgPhounsavath
23
67 kgĐurić
24
79 kg
1
68 kgRajović
2
74 kgRäim
3
69 kgPopov
4
75 kgHabteab
6
61 kgLauk
7
69 kgLaas
8
76 kgKoning
9
72 kgRikunov
10
71 kgCarman
11
66 kgJanse van Rensburg
12
74 kgvan Engelen
13
51 kgAvondts
18
62 kgNisu
20
84 kgHohmann
21
73 kgKim
22
68 kgPhounsavath
23
67 kgĐurić
24
79 kg
Weight (KG) →
Result →
84
51
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | MAIKIN Roman | 68 |
2 | RAJOVIĆ Dušan | 74 |
3 | RÄIM Mihkel | 69 |
4 | POPOV Anton | 75 |
6 | HABTEAB Yoel | 61 |
7 | LAUK Karl Patrick | 69 |
8 | LAAS Martin | 76 |
9 | KONING Stef | 72 |
10 | RIKUNOV Petr | 71 |
11 | CARMAN Ben | 66 |
12 | JANSE VAN RENSBURG Reinardt | 74 |
13 | VAN ENGELEN Adne | 51 |
18 | AVONDTS Mathis | 62 |
20 | NISU Oskar | 84 |
21 | HOHMANN Lars | 73 |
22 | KIM Euro | 68 |
23 | PHOUNSAVATH Ariya | 67 |
24 | ĐURIĆ Đorđe | 79 |