Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 117
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Kelly
1
77 kgRoche
2
74 kgImboden
3
70 kgvan der Poel
5
70 kgEarley
6
62 kgDuclos-Lassalle
7
73 kgWeltz
9
65 kgYates
16
74 kgKuiper
25
69 kgElliott
27
76 kgSchepers
42
60 kgLeMond
44
67 kgDemol
55
72 kgRiis
56
71 kgRué
70
74 kgHayton
72
69 kgMadiot
77
68 kgStephens
79
65 kg
1
77 kgRoche
2
74 kgImboden
3
70 kgvan der Poel
5
70 kgEarley
6
62 kgDuclos-Lassalle
7
73 kgWeltz
9
65 kgYates
16
74 kgKuiper
25
69 kgElliott
27
76 kgSchepers
42
60 kgLeMond
44
67 kgDemol
55
72 kgRiis
56
71 kgRué
70
74 kgHayton
72
69 kgMadiot
77
68 kgStephens
79
65 kg
Weight (KG) →
Result →
77
60
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | KELLY Sean | 77 |
2 | ROCHE Stephen | 74 |
3 | IMBODEN Heinz | 70 |
5 | VAN DER POEL Adrie | 70 |
6 | EARLEY Martin | 62 |
7 | DUCLOS-LASSALLE Gilbert | 73 |
9 | WELTZ Johnny | 65 |
16 | YATES Sean | 74 |
25 | KUIPER Hennie | 69 |
27 | ELLIOTT Malcolm | 76 |
42 | SCHEPERS Eddy | 60 |
44 | LEMOND Greg | 67 |
55 | DEMOL Dirk | 72 |
56 | RIIS Bjarne | 71 |
70 | RUÉ Gérard | 74 |
72 | HAYTON Dudley | 69 |
77 | MADIOT Marc | 68 |
79 | STEPHENS Neil | 65 |