Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 122
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Breukink
1
70 kgMuseeuw
2
71 kgYates
3
74 kgEkimov
4
69 kgBauer
8
72 kgKelly
10
77 kgHolm Sørensen
13
77 kgBölts
17
73 kgDe Wilde
18
70 kgFignon
19
67 kgNijdam
26
70 kgCook
30
66 kgEarley
33
62 kgRué
36
74 kgBomans
37
74 kgStephens
38
64 kgJeker
44
72 kgDemol
48
72 kgLilholt
50
72 kgVanderaerden
53
74 kgMiller
55
72 kgSlane
72
64 kgDemierre
74
70 kg
1
70 kgMuseeuw
2
71 kgYates
3
74 kgEkimov
4
69 kgBauer
8
72 kgKelly
10
77 kgHolm Sørensen
13
77 kgBölts
17
73 kgDe Wilde
18
70 kgFignon
19
67 kgNijdam
26
70 kgCook
30
66 kgEarley
33
62 kgRué
36
74 kgBomans
37
74 kgStephens
38
64 kgJeker
44
72 kgDemol
48
72 kgLilholt
50
72 kgVanderaerden
53
74 kgMiller
55
72 kgSlane
72
64 kgDemierre
74
70 kg
Weight (KG) →
Result →
77
62
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | BREUKINK Erik | 70 |
2 | MUSEEUW Johan | 71 |
3 | YATES Sean | 74 |
4 | EKIMOV Viatcheslav | 69 |
8 | BAUER Steve | 72 |
10 | KELLY Sean | 77 |
13 | HOLM SØRENSEN Brian | 77 |
17 | BÖLTS Udo | 73 |
18 | DE WILDE Etienne | 70 |
19 | FIGNON Laurent | 67 |
26 | NIJDAM Jelle | 70 |
30 | COOK David | 66 |
33 | EARLEY Martin | 62 |
36 | RUÉ Gérard | 74 |
37 | BOMANS Carlo | 74 |
38 | STEPHENS Matthew | 64 |
44 | JEKER Fabian | 72 |
48 | DEMOL Dirk | 72 |
50 | LILHOLT Søren | 72 |
53 | VANDERAERDEN Eric | 74 |
55 | MILLER Graeme | 72 |
72 | SLANE Paul | 64 |
74 | DEMIERRE Serge | 70 |