Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 8.8 * weight + 153
This means that on average for every extra kilogram weight a rider loses 8.8 positions in the result.
van der Poel
3
70 kgTchmil
7
75 kgSunderland
8
65 kgCapelle
9
73 kgYates
990
74 kgBomans
990
74 kgAndreu
990
77 kgMadouas
990
70 kgBölts
990
73 kgBrochard
990
68 kgBaldato
990
60 kgArmstrong
990
72 kgHarmeling
990
76 kgRoche
990
74 kgDe Wilde
990
70 kgEarley
990
62 kgKelly
990
77 kgVanderaerden
990
74 kgPieters
990
82 kg
3
70 kgTchmil
7
75 kgSunderland
8
65 kgCapelle
9
73 kgYates
990
74 kgBomans
990
74 kgAndreu
990
77 kgMadouas
990
70 kgBölts
990
73 kgBrochard
990
68 kgBaldato
990
60 kgArmstrong
990
72 kgHarmeling
990
76 kgRoche
990
74 kgDe Wilde
990
70 kgEarley
990
62 kgKelly
990
77 kgVanderaerden
990
74 kgPieters
990
82 kg
Weight (KG) →
Result →
82
60
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | VAN DER POEL Adrie | 70 |
7 | TCHMIL Andrei | 75 |
8 | SUNDERLAND Scott | 65 |
9 | CAPELLE Christophe | 73 |
990 | YATES Sean | 74 |
990 | BOMANS Carlo | 74 |
990 | ANDREU Frankie | 77 |
990 | MADOUAS Laurent | 70 |
990 | BÖLTS Udo | 73 |
990 | BROCHARD Laurent | 68 |
990 | BALDATO Fabio | 60 |
990 | ARMSTRONG Lance | 72 |
990 | HARMELING Rob | 76 |
990 | ROCHE Stephen | 74 |
990 | DE WILDE Etienne | 70 |
990 | EARLEY Martin | 62 |
990 | KELLY Sean | 77 |
990 | VANDERAERDEN Eric | 74 |
990 | PIETERS Peter | 82 |