Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -7.4 * weight + 1246
This means that on average for every extra kilogram weight a rider loses -7.4 positions in the result.
Vanderaerden
1
74 kgPieters
3
82 kgBaldato
4
60 kgvan der Poel
7
70 kgAndreu
8
77 kgYates
990
74 kgBomans
990
74 kgMadouas
990
70 kgTchmil
990
75 kgBölts
990
73 kgSunderland
990
65 kgBrochard
990
68 kgArmstrong
990
72 kgHarmeling
990
76 kgRoche
990
74 kgDe Wilde
990
70 kgEarley
990
62 kgKelly
990
77 kg
1
74 kgPieters
3
82 kgBaldato
4
60 kgvan der Poel
7
70 kgAndreu
8
77 kgYates
990
74 kgBomans
990
74 kgMadouas
990
70 kgTchmil
990
75 kgBölts
990
73 kgSunderland
990
65 kgBrochard
990
68 kgArmstrong
990
72 kgHarmeling
990
76 kgRoche
990
74 kgDe Wilde
990
70 kgEarley
990
62 kgKelly
990
77 kg
Weight (KG) →
Result →
82
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | VANDERAERDEN Eric | 74 |
3 | PIETERS Peter | 82 |
4 | BALDATO Fabio | 60 |
7 | VAN DER POEL Adrie | 70 |
8 | ANDREU Frankie | 77 |
990 | YATES Sean | 74 |
990 | BOMANS Carlo | 74 |
990 | MADOUAS Laurent | 70 |
990 | TCHMIL Andrei | 75 |
990 | BÖLTS Udo | 73 |
990 | SUNDERLAND Scott | 65 |
990 | BROCHARD Laurent | 68 |
990 | ARMSTRONG Lance | 72 |
990 | HARMELING Rob | 76 |
990 | ROCHE Stephen | 74 |
990 | DE WILDE Etienne | 70 |
990 | EARLEY Martin | 62 |
990 | KELLY Sean | 77 |