Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Sypytkowski
1
76 kgLunghi
2
61 kgGates
3
71 kgZamana
7
74 kgGlasner
11
72 kgFukushima
13
62 kgTashiro
14
54 kgMartinello
15
71 kgMitchell
16
70 kgMiller
18
72 kgFujino
19
63 kgDavis
22
60 kgSacchi
28
68 kgTang
30
71 kgKashechkin
34
70 kgWalton
39
68 kgLjungqvist
41
73 kgO'Neill
42
72 kgMiura
47
67 kgRogers
54
74 kgSuzuki
55
60 kgDavis
65
73 kg
1
76 kgLunghi
2
61 kgGates
3
71 kgZamana
7
74 kgGlasner
11
72 kgFukushima
13
62 kgTashiro
14
54 kgMartinello
15
71 kgMitchell
16
70 kgMiller
18
72 kgFujino
19
63 kgDavis
22
60 kgSacchi
28
68 kgTang
30
71 kgKashechkin
34
70 kgWalton
39
68 kgLjungqvist
41
73 kgO'Neill
42
72 kgMiura
47
67 kgRogers
54
74 kgSuzuki
55
60 kgDavis
65
73 kg
Weight (KG) →
Result →
76
54
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | SYPYTKOWSKI Andrzej | 76 |
2 | LUNGHI Denis | 61 |
3 | GATES Nick | 71 |
7 | ZAMANA Cezary | 74 |
11 | GLASNER Björn | 72 |
13 | FUKUSHIMA Shinichi | 62 |
14 | TASHIRO Yasutaka | 54 |
15 | MARTINELLO Silvio | 71 |
16 | MITCHELL Glen | 70 |
18 | MILLER Graeme | 72 |
19 | FUJINO Tomokazu | 63 |
22 | DAVIS Scott | 60 |
28 | SACCHI Fabio | 68 |
30 | TANG Xuezhong | 71 |
34 | KASHECHKIN Andrey | 70 |
39 | WALTON Brian | 68 |
41 | LJUNGQVIST Marcus | 73 |
42 | O'NEILL Nathan | 72 |
47 | MIURA Kyoshi | 67 |
54 | ROGERS Michael | 74 |
55 | SUZUKI Shinri | 60 |
65 | DAVIS Allan | 73 |