Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 83
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Miller
1
72 kgSacchi
2
68 kgDavis
3
73 kgWalton
4
68 kgFukushima
5
62 kgSypytkowski
8
76 kgGlasner
9
72 kgZamana
10
74 kgRogers
11
74 kgMartinello
12
71 kgTang
14
71 kgMitchell
15
70 kgSuzuki
16
60 kgGates
25
71 kgMiura
28
67 kgDavis
29
60 kgFujino
31
63 kgKashechkin
32
70 kgLunghi
39
61 kgTashiro
53
54 kgLjungqvist
55
73 kgO'Neill
63
72 kgColombo
67
70 kg
1
72 kgSacchi
2
68 kgDavis
3
73 kgWalton
4
68 kgFukushima
5
62 kgSypytkowski
8
76 kgGlasner
9
72 kgZamana
10
74 kgRogers
11
74 kgMartinello
12
71 kgTang
14
71 kgMitchell
15
70 kgSuzuki
16
60 kgGates
25
71 kgMiura
28
67 kgDavis
29
60 kgFujino
31
63 kgKashechkin
32
70 kgLunghi
39
61 kgTashiro
53
54 kgLjungqvist
55
73 kgO'Neill
63
72 kgColombo
67
70 kg
Weight (KG) →
Result →
76
54
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | MILLER Graeme | 72 |
2 | SACCHI Fabio | 68 |
3 | DAVIS Allan | 73 |
4 | WALTON Brian | 68 |
5 | FUKUSHIMA Shinichi | 62 |
8 | SYPYTKOWSKI Andrzej | 76 |
9 | GLASNER Björn | 72 |
10 | ZAMANA Cezary | 74 |
11 | ROGERS Michael | 74 |
12 | MARTINELLO Silvio | 71 |
14 | TANG Xuezhong | 71 |
15 | MITCHELL Glen | 70 |
16 | SUZUKI Shinri | 60 |
25 | GATES Nick | 71 |
28 | MIURA Kyoshi | 67 |
29 | DAVIS Scott | 60 |
31 | FUJINO Tomokazu | 63 |
32 | KASHECHKIN Andrey | 70 |
39 | LUNGHI Denis | 61 |
53 | TASHIRO Yasutaka | 54 |
55 | LJUNGQVIST Marcus | 73 |
63 | O'NEILL Nathan | 72 |
67 | COLOMBO Gabriele | 70 |