Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
O'Neill
2
72 kgWalton
3
68 kgLunghi
7
61 kgSypytkowski
8
76 kgFujino
9
63 kgLjungqvist
12
73 kgZamana
13
74 kgTang
14
71 kgMiller
15
72 kgMartinello
16
71 kgMitchell
17
70 kgFukushima
21
62 kgTashiro
25
54 kgGates
30
71 kgKashechkin
31
70 kgGlasner
33
72 kgDavis
35
60 kgSacchi
38
68 kgMiura
44
67 kgSuzuki
47
60 kgRogers
54
74 kg
2
72 kgWalton
3
68 kgLunghi
7
61 kgSypytkowski
8
76 kgFujino
9
63 kgLjungqvist
12
73 kgZamana
13
74 kgTang
14
71 kgMiller
15
72 kgMartinello
16
71 kgMitchell
17
70 kgFukushima
21
62 kgTashiro
25
54 kgGates
30
71 kgKashechkin
31
70 kgGlasner
33
72 kgDavis
35
60 kgSacchi
38
68 kgMiura
44
67 kgSuzuki
47
60 kgRogers
54
74 kg
Weight (KG) →
Result →
76
54
2
54
# | Rider | Weight (KG) |
---|---|---|
2 | O'NEILL Nathan | 72 |
3 | WALTON Brian | 68 |
7 | LUNGHI Denis | 61 |
8 | SYPYTKOWSKI Andrzej | 76 |
9 | FUJINO Tomokazu | 63 |
12 | LJUNGQVIST Marcus | 73 |
13 | ZAMANA Cezary | 74 |
14 | TANG Xuezhong | 71 |
15 | MILLER Graeme | 72 |
16 | MARTINELLO Silvio | 71 |
17 | MITCHELL Glen | 70 |
21 | FUKUSHIMA Shinichi | 62 |
25 | TASHIRO Yasutaka | 54 |
30 | GATES Nick | 71 |
31 | KASHECHKIN Andrey | 70 |
33 | GLASNER Björn | 72 |
35 | DAVIS Scott | 60 |
38 | SACCHI Fabio | 68 |
44 | MIURA Kyoshi | 67 |
47 | SUZUKI Shinri | 60 |
54 | ROGERS Michael | 74 |