Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 53
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Walton
1
68 kgFukushima
3
62 kgMartinello
4
71 kgMiller
5
72 kgDavis
7
60 kgFujino
12
63 kgLjungqvist
14
73 kgRogers
17
74 kgSuzuki
20
60 kgGates
23
71 kgSypytkowski
26
76 kgKashechkin
28
70 kgZamana
30
74 kgMitchell
31
70 kgMiura
33
67 kgLunghi
35
61 kgO'Neill
40
72 kgSacchi
49
68 kgTang
54
71 kgGlasner
60
72 kgDavis
65
73 kg
1
68 kgFukushima
3
62 kgMartinello
4
71 kgMiller
5
72 kgDavis
7
60 kgFujino
12
63 kgLjungqvist
14
73 kgRogers
17
74 kgSuzuki
20
60 kgGates
23
71 kgSypytkowski
26
76 kgKashechkin
28
70 kgZamana
30
74 kgMitchell
31
70 kgMiura
33
67 kgLunghi
35
61 kgO'Neill
40
72 kgSacchi
49
68 kgTang
54
71 kgGlasner
60
72 kgDavis
65
73 kg
Weight (KG) →
Result →
76
60
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | WALTON Brian | 68 |
3 | FUKUSHIMA Shinichi | 62 |
4 | MARTINELLO Silvio | 71 |
5 | MILLER Graeme | 72 |
7 | DAVIS Scott | 60 |
12 | FUJINO Tomokazu | 63 |
14 | LJUNGQVIST Marcus | 73 |
17 | ROGERS Michael | 74 |
20 | SUZUKI Shinri | 60 |
23 | GATES Nick | 71 |
26 | SYPYTKOWSKI Andrzej | 76 |
28 | KASHECHKIN Andrey | 70 |
30 | ZAMANA Cezary | 74 |
31 | MITCHELL Glen | 70 |
33 | MIURA Kyoshi | 67 |
35 | LUNGHI Denis | 61 |
40 | O'NEILL Nathan | 72 |
49 | SACCHI Fabio | 68 |
54 | TANG Xuezhong | 71 |
60 | GLASNER Björn | 72 |
65 | DAVIS Allan | 73 |