Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Zucconi
5
63 kgMiura
6
67 kgDavis
8
60 kgCappelle
10
71 kgGuyton
12
74 kgAbe
14
67 kgTashiro
15
54 kgLupeikis
19
80 kgSuzuki
20
60 kgMiller
24
72 kgYates
29
73 kgFukushima
38
62 kgMiyazawa
41
61 kgCalcagni
49
65 kgApollonio
52
70 kgGerrans
53
62 kgBates
57
61 kgDavis
72
73 kgFujino
82
63 kgReid
86
62 kgBrown
88
76 kg
5
63 kgMiura
6
67 kgDavis
8
60 kgCappelle
10
71 kgGuyton
12
74 kgAbe
14
67 kgTashiro
15
54 kgLupeikis
19
80 kgSuzuki
20
60 kgMiller
24
72 kgYates
29
73 kgFukushima
38
62 kgMiyazawa
41
61 kgCalcagni
49
65 kgApollonio
52
70 kgGerrans
53
62 kgBates
57
61 kgDavis
72
73 kgFujino
82
63 kgReid
86
62 kgBrown
88
76 kg
Weight (KG) →
Result →
80
54
5
88
# | Rider | Weight (KG) |
---|---|---|
5 | ZUCCONI Pietro | 63 |
6 | MIURA Kyoshi | 67 |
8 | DAVIS Scott | 60 |
10 | CAPPELLE Andy | 71 |
12 | GUYTON Scott | 74 |
14 | ABE Yoshiyuki | 67 |
15 | TASHIRO Yasutaka | 54 |
19 | LUPEIKIS Remigius | 80 |
20 | SUZUKI Shinri | 60 |
24 | MILLER Graeme | 72 |
29 | YATES Jeremy | 73 |
38 | FUKUSHIMA Shinichi | 62 |
41 | MIYAZAWA Takashi | 61 |
49 | CALCAGNI Patrick | 65 |
52 | APOLLONIO Massimo | 70 |
53 | GERRANS Simon | 62 |
57 | BATES Gene | 61 |
72 | DAVIS Allan | 73 |
82 | FUJINO Tomokazu | 63 |
86 | REID Robin | 62 |
88 | BROWN Graeme Allen | 76 |