Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Miller
1
72 kgZucconi
5
63 kgSuzuki
8
60 kgDavis
11
60 kgCappelle
19
71 kgTashiro
20
54 kgAbe
23
67 kgMiura
32
67 kgYates
38
73 kgLupeikis
40
80 kgCalcagni
44
65 kgGuyton
46
74 kgFukushima
48
62 kgApollonio
58
70 kgBates
61
61 kgGerrans
69
62 kgMiyazawa
70
61 kgReid
71
62 kgFujino
72
63 kgDavis
79
73 kgBrown
82
76 kg
1
72 kgZucconi
5
63 kgSuzuki
8
60 kgDavis
11
60 kgCappelle
19
71 kgTashiro
20
54 kgAbe
23
67 kgMiura
32
67 kgYates
38
73 kgLupeikis
40
80 kgCalcagni
44
65 kgGuyton
46
74 kgFukushima
48
62 kgApollonio
58
70 kgBates
61
61 kgGerrans
69
62 kgMiyazawa
70
61 kgReid
71
62 kgFujino
72
63 kgDavis
79
73 kgBrown
82
76 kg
Weight (KG) →
Result →
80
54
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | MILLER Graeme | 72 |
5 | ZUCCONI Pietro | 63 |
8 | SUZUKI Shinri | 60 |
11 | DAVIS Scott | 60 |
19 | CAPPELLE Andy | 71 |
20 | TASHIRO Yasutaka | 54 |
23 | ABE Yoshiyuki | 67 |
32 | MIURA Kyoshi | 67 |
38 | YATES Jeremy | 73 |
40 | LUPEIKIS Remigius | 80 |
44 | CALCAGNI Patrick | 65 |
46 | GUYTON Scott | 74 |
48 | FUKUSHIMA Shinichi | 62 |
58 | APOLLONIO Massimo | 70 |
61 | BATES Gene | 61 |
69 | GERRANS Simon | 62 |
70 | MIYAZAWA Takashi | 61 |
71 | REID Robin | 62 |
72 | FUJINO Tomokazu | 63 |
79 | DAVIS Allan | 73 |
82 | BROWN Graeme Allen | 76 |