Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Lloyd
1
62 kgDuma
3
64 kgMiyazawa
4
61 kgSuzuki
5
60 kgVelits
7
63 kgArashiro
8
64 kgŠtybar
9
68 kgAugustyn
10
65 kgMcCann
12
73 kgMizurov
13
68 kgVelits
14
70 kgDoi
15
58 kgDyachenko
16
65 kgBelohvoščiks
18
70 kgFukushima
21
62 kgPauwels
24
60 kgSano
25
76 kgWong
27
65 kgHatanaka
30
72 kgVerstraeten
33
65 kgLloyd
36
70 kgShimizu
42
60 kgTashiro
43
54 kg
1
62 kgDuma
3
64 kgMiyazawa
4
61 kgSuzuki
5
60 kgVelits
7
63 kgArashiro
8
64 kgŠtybar
9
68 kgAugustyn
10
65 kgMcCann
12
73 kgMizurov
13
68 kgVelits
14
70 kgDoi
15
58 kgDyachenko
16
65 kgBelohvoščiks
18
70 kgFukushima
21
62 kgPauwels
24
60 kgSano
25
76 kgWong
27
65 kgHatanaka
30
72 kgVerstraeten
33
65 kgLloyd
36
70 kgShimizu
42
60 kgTashiro
43
54 kg
Weight (KG) →
Result →
76
54
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | LLOYD Matthew | 62 |
3 | DUMA Vladimir | 64 |
4 | MIYAZAWA Takashi | 61 |
5 | SUZUKI Shinri | 60 |
7 | VELITS Peter | 63 |
8 | ARASHIRO Yukiya | 64 |
9 | ŠTYBAR Zdeněk | 68 |
10 | AUGUSTYN John-Lee | 65 |
12 | MCCANN David | 73 |
13 | MIZUROV Andrey | 68 |
14 | VELITS Martin | 70 |
15 | DOI Yukihiro | 58 |
16 | DYACHENKO Alexandr | 65 |
18 | BELOHVOŠČIKS Raivis | 70 |
21 | FUKUSHIMA Shinichi | 62 |
24 | PAUWELS Kevin | 60 |
25 | SANO Junya | 76 |
27 | WONG Kam-Po | 65 |
30 | HATANAKA Yusuke | 72 |
33 | VERSTRAETEN Jan | 65 |
36 | LLOYD Daniel | 70 |
42 | SHIMIZU Miyataka | 60 |
43 | TASHIRO Yasutaka | 54 |