Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 30
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Crawford
3
59 kgMeyer
5
70 kgWitecki
7
70 kgArashiro
9
64 kgFukushima
12
62 kgNishitani
15
62 kgSano
16
76 kgDoi
17
58 kgChmielewski
18
72 kgSulzberger
22
65 kgAbe
28
67 kgClarke
32
63 kgvan Bon
35
72 kgGeorges
37
69 kgGourov
39
75 kgPark
41
73 kgPawlak
45
73 kgDempster
49
77 kgShimizu
51
60 kgMukaigawa
58
64 kgMiyazawa
59
61 kgMifune
72
70 kgSuzuki
84
60 kg
3
59 kgMeyer
5
70 kgWitecki
7
70 kgArashiro
9
64 kgFukushima
12
62 kgNishitani
15
62 kgSano
16
76 kgDoi
17
58 kgChmielewski
18
72 kgSulzberger
22
65 kgAbe
28
67 kgClarke
32
63 kgvan Bon
35
72 kgGeorges
37
69 kgGourov
39
75 kgPark
41
73 kgPawlak
45
73 kgDempster
49
77 kgShimizu
51
60 kgMukaigawa
58
64 kgMiyazawa
59
61 kgMifune
72
70 kgSuzuki
84
60 kg
Weight (KG) →
Result →
77
58
3
84
# | Rider | Weight (KG) |
---|---|---|
3 | CRAWFORD Jai | 59 |
5 | MEYER Cameron | 70 |
7 | WITECKI Mariusz | 70 |
9 | ARASHIRO Yukiya | 64 |
12 | FUKUSHIMA Shinichi | 62 |
15 | NISHITANI Taiji | 62 |
16 | SANO Junya | 76 |
17 | DOI Yukihiro | 58 |
18 | CHMIELEWSKI Piotr | 72 |
22 | SULZBERGER Wesley | 65 |
28 | ABE Yoshiyuki | 67 |
32 | CLARKE Simon | 63 |
35 | VAN BON Léon | 72 |
37 | GEORGES Sylvain | 69 |
39 | GOUROV Maxim | 75 |
41 | PARK Sung Baek | 73 |
45 | PAWLAK Wojciech | 73 |
49 | DEMPSTER Zak | 77 |
51 | SHIMIZU Miyataka | 60 |
58 | MUKAIGAWA Naoki | 64 |
59 | MIYAZAWA Takashi | 61 |
72 | MIFUNE Masahiko | 70 |
84 | SUZUKI Shinri | 60 |