Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Harper
1
67 kgDíaz
3
64 kgSunderland
4
67 kgLaverack
5
62 kgPerry
6
71 kgYokoyama
7
57 kgAmezawa
8
60 kgPer
9
81 kgOkamoto
10
65 kgRäim
11
69 kgWood
12
72 kgSchreurs
13
69 kgChoi
14
53 kgYamamoto
15
63 kgLaas
18
76 kgKoishi
21
62 kgArashiro
22
65 kgNakata
23
67 kgKuroeda
25
57 kg
1
67 kgDíaz
3
64 kgSunderland
4
67 kgLaverack
5
62 kgPerry
6
71 kgYokoyama
7
57 kgAmezawa
8
60 kgPer
9
81 kgOkamoto
10
65 kgRäim
11
69 kgWood
12
72 kgSchreurs
13
69 kgChoi
14
53 kgYamamoto
15
63 kgLaas
18
76 kgKoishi
21
62 kgArashiro
22
65 kgNakata
23
67 kgKuroeda
25
57 kg
Weight (KG) →
Result →
81
53
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HARPER Chris | 67 |
3 | DÍAZ José Manuel | 64 |
4 | SUNDERLAND Dylan | 67 |
5 | LAVERACK Edward | 62 |
6 | PERRY Benjamin | 71 |
7 | YOKOYAMA Kota | 57 |
8 | AMEZAWA Takeaki | 60 |
9 | PER David | 81 |
10 | OKAMOTO Hayato | 65 |
11 | RÄIM Mihkel | 69 |
12 | WOOD Oliver | 72 |
13 | SCHREURS Hamish | 69 |
14 | CHOI Hiu Fung | 53 |
15 | YAMAMOTO Masaki | 63 |
18 | LAAS Martin | 76 |
21 | KOISHI Yuma | 62 |
22 | ARASHIRO Yudai | 65 |
23 | NAKATA Takuya | 67 |
25 | KUROEDA Saya | 57 |