Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 83
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Firsanov
1
58 kgKatyrin
7
65 kgKritskiy
8
81 kgVasilyev
13
70 kgMamykin
15
62 kgMaikin
18
68 kgKobernyak
21
59 kgPapok
23
76 kgDubovski
26
75 kgPiasetski
28
66 kgBoev
32
74 kgStash
34
77 kgSavitskiy
38
72 kgStrokau
41
74 kgRamanau
44
68 kgGrigorev
45
73 kgSerov
49
77 kgErshov
50
70 kgAhiyevich
52
70 kgKurbatov
62
73 kgAkhramenka
67
78 kgTsishkou
69
72 kgShemetau
75
79 kg
1
58 kgKatyrin
7
65 kgKritskiy
8
81 kgVasilyev
13
70 kgMamykin
15
62 kgMaikin
18
68 kgKobernyak
21
59 kgPapok
23
76 kgDubovski
26
75 kgPiasetski
28
66 kgBoev
32
74 kgStash
34
77 kgSavitskiy
38
72 kgStrokau
41
74 kgRamanau
44
68 kgGrigorev
45
73 kgSerov
49
77 kgErshov
50
70 kgAhiyevich
52
70 kgKurbatov
62
73 kgAkhramenka
67
78 kgTsishkou
69
72 kgShemetau
75
79 kg
Weight (KG) →
Result →
81
58
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | FIRSANOV Sergey | 58 |
7 | KATYRIN Roman | 65 |
8 | KRITSKIY Timofey | 81 |
13 | VASILYEV Maksym | 70 |
15 | MAMYKIN Matvey | 62 |
18 | MAIKIN Roman | 68 |
21 | KOBERNYAK Evgeny | 59 |
23 | PAPOK Siarhei | 76 |
26 | DUBOVSKI Vladzislau | 75 |
28 | PIASETSKI Aliaksandr | 66 |
32 | BOEV Igor | 74 |
34 | STASH Mamyr | 77 |
38 | SAVITSKIY Ivan | 72 |
41 | STROKAU Vasili | 74 |
44 | RAMANAU Raman | 68 |
45 | GRIGOREV Aleksandr | 73 |
49 | SEROV Alexander | 77 |
50 | ERSHOV Artur | 70 |
52 | AHIYEVICH Aleh | 70 |
62 | KURBATOV Alexey | 73 |
67 | AKHRAMENKA Yauheni | 78 |
69 | TSISHKOU Raman | 72 |
75 | SHEMETAU Mikhail | 79 |