Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -5.4 * weight + 464
This means that on average for every extra kilogram weight a rider loses -5.4 positions in the result.
Stampe
2
79 kgLaas
3
76 kgLarsen
4
72 kgRäim
5
69 kgNisu
6
84 kgRosenlund
10
72 kgTamm
11
73 kgKongstad
12
75 kgAnsons
13
77 kgKmieliauskas
15
68 kgBogdanovičs
18
68 kgSlemdahl
19
75 kgLauk
20
69 kgLond
21
65 kgLarsson
28
73 kgMatuzevičius
30
69 kgToftemark
31
73 kgSkjerping
991
71 kg
2
79 kgLaas
3
76 kgLarsen
4
72 kgRäim
5
69 kgNisu
6
84 kgRosenlund
10
72 kgTamm
11
73 kgKongstad
12
75 kgAnsons
13
77 kgKmieliauskas
15
68 kgBogdanovičs
18
68 kgSlemdahl
19
75 kgLauk
20
69 kgLond
21
65 kgLarsson
28
73 kgMatuzevičius
30
69 kgToftemark
31
73 kgSkjerping
991
71 kg
Weight (KG) →
Result →
84
65
2
991
# | Rider | Weight (KG) |
---|---|---|
2 | STAMPE Daniel | 79 |
3 | LAAS Martin | 76 |
4 | LARSEN Mathias Alexander Erik | 72 |
5 | RÄIM Mihkel | 69 |
6 | NISU Oskar | 84 |
10 | ROSENLUND Stian | 72 |
11 | TAMM Lauri | 73 |
12 | KONGSTAD Alfred | 75 |
13 | ANSONS Kristers | 77 |
15 | KMIELIAUSKAS Rokas | 68 |
18 | BOGDANOVIČS Māris | 68 |
19 | SLEMDAHL Vetle | 75 |
20 | LAUK Karl Patrick | 69 |
21 | LOND Daniel | 65 |
28 | LARSSON David | 73 |
30 | MATUZEVIČIUS Žygimantas | 69 |
31 | TOFTEMARK Lucas | 73 |
991 | SKJERPING Kristoffer | 71 |